科目: 来源: 题型:
【题目】在中,.
(1)观察猜想
如图1,分别交于点的值是 ,直线与直线相交所成的较小角的度数是 .
(2)类比探究
如图2,将绕点逆时针旋转,请写出的值及直线与直线相交所成的小角的度数,并就图2的情形说明理由,
(3)解决问题
若,请直接写出点在同一直线上时的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,是一垂直于水平面的建筑物,某同学从建筑物底端出发,先沿水平方向向右行走米到达点再经过段坡度(或坡比)为坡长为米的斜坡到达点然后再沿水平方向向右行走米到达点均在同一平面内).在处测得建筑物顶端的仰角为求建筑物的高度. (参考数据:,)
查看答案和解析>>
科目: 来源: 题型:
【题目】在一次数学活动课上,某校初三数学老师带领学生去测河宽,如图所示,某学生在河东岸点处观测到河对岸水边有一点,测得在北偏西的方向上,沿河岸向北前行20米到达处,测得在北偏西的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈,sin31°≈)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线经过点.点的坐标为,过点作直线轴,点是抛物线上一点,于点.
求抛物线解析式:
在抛物线对称轴上是否存在一定点,使得永远成立?若存在,求出点的坐标;若不存在,请说明理由.
若点坐标为,求的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读材料:各类方程的解法
求解一元一次方程, 根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为二元一次方程组来解.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生不适合原方程的根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想-转化,即:把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程可以通过因式分解把它转化为,解方程和,可得方程的解
问题:方程的解是 , ,
拓展:用“转化”思想求方程的解;
变式:用“转化”思想解方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】为庆祝新中国成立七十周年,某校开展了“祖国在我心中”手抄报展评活动.小红同学设计的手抄报如右图所示,手抄报的外边框长,宽,正中央是一个与整个手抄报长宽比例相同的矩形.又知四周边衬所占面积是手抄报面积的四分之一,上、下边衬等宽,左、右边衬等宽,求小红设计手抄报的四周边衬的宽度. (精确到)
(参考数据:,,)
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题10分)如图,直线y=x+m和抛物线y=+bx+c都经过点A(1,0),
B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在平面直角坐标系中,一组同心圆的圆心为坐标原点,它们的半径分别为.按照“加"依次递增; 一组平行线, ..分别过,且与过该点的圆相切.若半径为的圆与在第一象限内交于点,半径为的圆与在第象限内相交于点,半径为的圆与在第一象限内相交于点按照此规律,则点的坐标是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com