精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+(lga+2)x+lgb,g(x)=2x+2,若f(-1)=0,且对一切实数x,不等式f(x)≥g(x)恒成立;
(Ⅰ)(本问5分)求实数a、b的值;
(Ⅱ)(本问7分)设F(x)=f(x)-g(x),数列{an}满足关系an=F(n),
证明:
(I)a=100,b=1000;
(II)证明见解析

(I)依题意,f(-1)=0即lgb=lga+1,又f(x)-g(x)≥0恒成立,
∴x2+xlga+lgb-2≥0恒成立,∴△=(lga)2-4(lgb-2)≤0,
消去b得(lga-2)2≤0,∴lga=2,且lgb=3,∴a=100,b=1000;
(II)由F(x)=(x+1)2,∴an=(n+1)2  ,∴k(k+1)<ak<(k+1)(k+2),

令k=1、2……、n,并将所得到的n个不等式相加,
可得
,不等式两端除以n,命题即证.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求证:函数上是增函数.
(Ⅱ)若上恒成立,求实数a的取值范围.
(Ⅲ)若函数上的值域是,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数:
(Ⅰ)证明:f(x)+2+f(2a-x)=0对定义域内的所有x都成立.
(Ⅱ)当f(x)的定义域为[a+,a+1]时,求证:f(x)的值域为[-3,-2];
(Ⅲ)设函数g(x)=x2+|(x-a)f(x)| ,求g(x) 的最小值 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知奇函数的定义域为实数集,且上是增函数,当 时,是否存在实数,使对所有的恒成立?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数,满足对任意的,当时,,则实数的取值范围为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂为适应市场需求,提高效益,特投入98万元引进先进设备,并马上投入生产,第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元。请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出,哪种方案较为合算?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.设的图象上任意两点,且,已知点M的横坐标为.
(I)求证:M点的纵坐标为定值;
(Ⅱ)若
(Ⅲ)已知为数列的前n项和,若都成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若,求的值.
(2)若,求的单调的递减区间;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案;在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过万元,同时奖金不超过利润的.现有三个奖励模型:.其中哪个模型能符合公司的要求?

查看答案和解析>>

同步练习册答案