精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2-(m+1)x+mlnx,m>0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设点A(x0,f(x0))(x0>1)为f(x)的图象上任意一点,若曲线y=f(x)在点A处的切线的斜率恒大于-1,求m的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)求函数的导数,利用函数单调性和导数之间的关系,即可求f(x)的单调区间;
(Ⅱ)求函数的导数,根据导数的几何意义,解不等式即可得到结论.
解答: 解:(Ⅰ) 依题意,f(x)的定义域为(0,+∞),f′(x)=x-(m+1)+
m
x
=
x2-(m+1)x+m
x
=
(x-m)(x-1)
x

令f'(x)=0得x=m或x=1.
①当0<m<1时,f(x)在(0,m)递增,(m,1)递减,(1,+∞)递增;
②当m=1时,f'(x)≥0恒成立,所以f(x)在(0,+∞)递增;
③当m>1时,f(x)在(0,1)递增,(1,m)递减,(m,+∞)递增;
(Ⅱ)因为函数f(x)在点A(x0,f(x0))处的切线的斜率大于-1,
所以当x0∈(1,+∞)时,f′(x)=x0-(m+1)+
m
x0
>-1
恒成立,
即当x0∈(1,+∞)时,x02-mx0+m>0恒成立.
x02-mx0+m>0⇒x02>m(x0-1)
当x0>1时x02>m(x0-1)等价于m<
x02
x0-1

g(x0)=
x02
x0-1
=
(x0-1)2+2(x0-1)+1
x0-1
=(x0-1)+
1
x0-1
+2≥4
(x0=2时取等号)
则在(1,+∞)上,当0<m<4时,
在函数f(x)的图象上任意一点A处的切线的斜率恒大于-1.
注:构造二次函数,比较
m
2
与1的大小也可得0<m<4.
点评:本题主要考查函数的单调区间的求解,以及导数的几何意义,考查导数的基本运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2cos(x-
π
6
),-2sin(x-
π
4
)),
b
=(cos(x-
π
6
),-sin(x+
π
4
)),f(x)=
a
b
-2.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-
π
12
π
12
]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
1
2
AD=1,CD=
3

(1)求证:平面PQB⊥平面PAD;
(2)设PM=2MC,求二面角M-BQ-C的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=ax2+x,a∈R.
(1)若函数φ(x)=f(x)-g(x)在其定义域内是单调增函数,求a的取值范围;
(2)设函数φ(x)的图象被点P(2,φ(2))分成的两部分为C1,C2.该函数图象在点P处的切线为l,且C1、C2位于直线l的两侧,试求所有满足条件的a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn+1=bn+2n-1(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)求
1
b3
+
1
b4
+
1
b5
+…+
1
bn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,直线l的参数方程为
x=2-
3
t
y=t
(t为参数),圆C的方程为x2+y2=4.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求直线l和圆C的极坐标方程;
(Ⅱ)求直线l和圆C的交点的极坐标(要求极角θ∈[0,2π))

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(ax2-2x)•ex,其中a≥0.
(Ⅰ)当a=
4
3
时,求f(x)的极值点;
(Ⅱ)若f(x)在[-1,1]上为单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是一个公差小于0的等差数列,且满足a3a7=-27,a2+a8=6
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,在由所有前n项和Sn组成的数列{Sn}中,哪一项最大,最大项是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足log2[4cos2(xy)+
1
4cos2(xy)
]=lny-
y
2
+ln
e2
2
,则ycos4x的值为
 

查看答案和解析>>

同步练习册答案