精英家教网 > 高中数学 > 题目详情
若实数x,y满足log2[4cos2(xy)+
1
4cos2(xy)
]=lny-
y
2
+ln
e2
2
,则ycos4x的值为
 
考点:对数的运算性质
专题:函数的性质及应用
分析:由4cos2(xy)+
1
4cos2(xy)
≥2,得log2[4cos2(xy)+
1
4cos2(xy)
≥1,令y=2,得lny-
y
2
+ln
e2
2
=1,由此推导出cos4x=-
1
2
,从而能求出ycos4x的值.
解答: 解:∵4cos2(xy)+
1
4cos2(xy)
≥2,
∴log2[4cos2(xy)+
1
4cos2(xy)
]≥1,
当且仅当4cos2(xy)=
1
4cos2(xy)

即4cos2(xy)=1时等号成立.
令y=2,得lny-
y
2
+ln
e2
2
=1,
∴4cos2(2x)=1,cos4x=-
1
2

∴ycos4x=-1.
故答案为:-1.
点评:本题考查函数值的求法,解题时要认真审题,注意均值不等式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-(m+1)x+mlnx,m>0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设点A(x0,f(x0))(x0>1)为f(x)的图象上任意一点,若曲线y=f(x)在点A处的切线的斜率恒大于-1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且满足Sn=2-an,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2nan,数列{bn}的前n项和为Tn,证明:Tn≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:

若等边△ABC的边长为2,平面内一点M满足
CM
=
1
3
CB
+
1
2
CA
,则
MA
MB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列各式:m+n=1,m2+n2=3,m3+n3=4,m4+n4=7,m5+n5=11,…,则m7+n7=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三角形ABC的边长为1,点P是AB边上的动点,点Q是AC边上的动点,且
AP
AB
AQ
=(1-λ)
AC
,λ∈R,则
BQ
CP
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在三棱锥S-ABC中,SA⊥平面SBC,∠BSC=90°,SC=1,二面A-BC-S为45°,二面角B-AC-S为60°,则三棱锥S-ABC外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
c
,满足
a
b
=
5
4
,|
a
-
b
|=2,且(
a
-
c
b
-
c
)=
π
2
,则|
c
|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x3-3x+c的图象与x轴至少有两个公共点,则c的取值范围是(  )
A、[-2,2]
B、(-2,2)
C、[2,+∞)
D、(-∞,-2]

查看答案和解析>>

同步练习册答案