精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn+1=bn+2n-1(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)求
1
b3
+
1
b4
+
1
b5
+…+
1
bn
的值.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)利用公式an=
S1,n=1
Sn-Sn-1,n≥2
,由已知条件能求出数列{an}的通项公式.
(2)由bn+1=bn+2n-1,利用累加法能求出bn=n2-2n
(3)由
1
bn
=
1
n2-2n
=
1
2
(
1
n-2
-
1
n
)
,利用裂项求和法能求出
1
b3
+
1
b4
+
1
b5
+…+
1
bn
的值.
解答: 解:(1)∵Sn=3n,∴Sn-1=3n-1,(n≥2)
∴an=Sn-Sn-1=3n-3n-1=2•3n-1,(n≥2)
当n=1时,a1=s1=3≠2×30
∴an=
3,n=1
2•3n-1,n≥2

(2)∵bn+1=bn+2n-1
∴b2-b1=1,b3-b2=3,b4-b3=5,…,bn-bn-1=2n-3
以上各式相加得:
bn-b1=1+3+5+…+(2n-3)
=
(n-1)(1+2n-3)
2
=(n-1)2

∵b1=-1,∴bn=n2-2n
(3)∵
1
bn
=
1
n2-2n
=
1
2
(
1
n-2
-
1
n
)
(n≥3)
1
b3
+
1
b4
+
1
b5
+…+
1
bn
=
1
2
(
1
3-2
-
1
3
+
1
4-2
-
1
4
+
1
5-2
-
1
5
+…+
1
n-2
-
1
n
)

=
1
2
(1+
1
2
-
1
n-1
-
1
n
)=
3n2-7n+2
4n2-4n
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要注意累加法和裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB=AD=2,把此梯形绕其直角边AD旋转120°得到如图所示的几何体,点G是∠BDF平分线上任意一点(异于点D),点M是弧
BF
的中点.
(Ⅰ)求证:BF⊥AG;
(Ⅱ)求三棱锥M-BDF的体积VM-BDF

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直四棱柱ABCD-A1B1C1D1中,AB=AA1,底面ABCD为菱形,∠ADC=120°,E为CC1延长线上一点.
(1)当CE=2CC1时,证明:A1E∥平面B1AD;
(2)是否存在实数λ,当CE=λCC1时,使得平面EB1D1⊥平面A1BD?若存在,求出λ的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有6个小球,其中红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为3,4,现从盒子中任取3个小球(假设每个小球从盒中被取出的可能性相同)
(Ⅰ)求取出的3个球中的编号最大数值为3的概率;
(Ⅱ)在取出的3个球中,记红色球编号最大数值为ξ,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-1)ex-kx2(x>0,k∈R).
(Ⅰ)谈论f(x)的单调性;
(Ⅱ)若当k>
1
2
时,f(x)+(ln2k)2+2kln
e
2k
>0对?x∈(0,+∞)恒成立,求证:f(k-1+ln2)<f(k).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-(m+1)x+mlnx,m>0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设点A(x0,f(x0))(x0>1)为f(x)的图象上任意一点,若曲线y=f(x)在点A处的切线的斜率恒大于-1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3a2+2b2=5,试求y=
2a2+1
b2+2
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+x+1,g(x)=f′(x),x∈R
(Ⅰ)证明:对任意a∈R,存在x0∈R,使得f(x),g(x)的图象在x=x0处的两条切线斜率相等;
(Ⅱ)求实数a的范围,使得f(x),g(x)均在[2,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列各式:m+n=1,m2+n2=3,m3+n3=4,m4+n4=7,m5+n5=11,…,则m7+n7=
 

查看答案和解析>>

同步练习册答案