精英家教网 > 高中数学 > 题目详情
一个盒子中装有6个小球,其中红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为3,4,现从盒子中任取3个小球(假设每个小球从盒中被取出的可能性相同)
(Ⅰ)求取出的3个球中的编号最大数值为3的概率;
(Ⅱ)在取出的3个球中,记红色球编号最大数值为ξ,求ξ的分布列与数学期望.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:概率与统计
分析:(Ⅰ)设“取出的3个球中编号最大数值为3的球”为事件A,则最大数值为3相当于从编号为1,2,3的红色球和编号为3的白色球中任取3个,由此能求出其概率.
(Ⅱ)ξ的可能取值为1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列与数学期望.
解答: 解:(Ⅰ)设“取出的3个球中编号最大数值为3的球”为事件A,
则最大数值为3相当于从编号为1,2,3的红色球和编号为3的白色球中任取3个,
其概率P(A)=
C
3
4
C
3
6
=
1
5
.  …(4分)
(Ⅱ)ξ的可能取值为1,2,3,4,…(5分)
P(ξ=1)=
1
C
3
6
=
1
20

P(ξ=2)=
C
2
3
C
3
6
=
3
20

P(ξ=3)=
C
2
4
C
3
6
=
6
20

P(ξ=4)=
C
2
5
C
3
6
=
10
20

所以ξ的分布列为 …(9分)
ξ1234
P
1
20
3
20
6
20
10
20
Eξ=1×
1
20
+2×
3
20
+3×
6
20
+4×
10
20
=
13
4
.…(12分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是(  )
A、11小时B、13小时
C、15小时D、10小时

查看答案和解析>>

科目:高中数学 来源: 题型:

某省示范性高中应届毕业班有3名男生和1名女生获得了同一名牌大学的自主招生校荐资格,根据这几位考生的实际情况,估计这3名男生能通过该大学自主招生考试的概率都是
1
2
,这1名女生通过的概率是
1
3
,且这4人是否通过考试互不影响.已知通过考试的男生有a人,女生有b人.
(Ⅰ)求a=b的概率;
(Ⅱ)记ξ=a=b,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
1
2
AD=1,CD=
3

(1)求证:平面PQB⊥平面PAD;
(2)设PM=2MC,求二面角M-BQ-C的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点.
(Ⅰ)求证:AE⊥PB;
(Ⅱ)求PB与面PAC所成角的正切值;
(Ⅲ)求异面直线PB与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=ax2+x,a∈R.
(1)若函数φ(x)=f(x)-g(x)在其定义域内是单调增函数,求a的取值范围;
(2)设函数φ(x)的图象被点P(2,φ(2))分成的两部分为C1,C2.该函数图象在点P处的切线为l,且C1、C2位于直线l的两侧,试求所有满足条件的a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn+1=bn+2n-1(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)求
1
b3
+
1
b4
+
1
b5
+…+
1
bn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(ax2-2x)•ex,其中a≥0.
(Ⅰ)当a=
4
3
时,求f(x)的极值点;
(Ⅱ)若f(x)在[-1,1]上为单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为
x=cosθ
y=sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
3
)=6.点P在曲线C上,则点P到直线l的距离的最小值为
 

查看答案和解析>>

同步练习册答案