精英家教网 > 高中数学 > 题目详情
14.在极坐标系中,已知点A(2,$\frac{π}{2}$),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.

分析 点A(2,$\frac{π}{2}$)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.AB最短时,点B为直线x-y+2=0与直线l的交点,求出交点,进而得出.

解答 解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,
则点A(2,$\frac{π}{2}$)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.
AB最短时,点B为直线x-y+2=0与直线l的交点,
联立$\left\{\begin{array}{l}{x-y+2=0}\\{x+y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,所以点B的直角坐标为(-1,1).
所以点B的极坐标为$(\sqrt{2},\frac{3π}{4})$.

点评 本题考查了极坐标方程与直角坐标方程的互化,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.一个袋中装有1红,2白和2黑共5个小球,这5个小球除颜色外其它都相同,现从袋中任取2个球,则至少取到1个白球的概率为$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在坐标系中,圆C的圆心在极轴上,且过极点和点(3$\sqrt{2}$,$\frac{π}{4}$),求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,1),以原点为圆心,椭圆短半轴长为半径的圆经过椭圆的焦点.
(1)求椭圆C的方程;
(2)设过点(-1,0)的直线l与椭圆C相交于A、B两点,试问在x轴上是否存在一个定点M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),圆C的方程为x2+y2-4x-2y+4=0.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求l的普通方程与C的极坐标方程;
(2)已知l与C交于P,Q,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i为虚数单位,则复数z=(1+i)i对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,则“$\overrightarrow{a}$,$\overrightarrow{b}$共线”是“|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC三内角A,B,C对应的边长分别为a,b,c,且$B=\frac{2π}{3}$,又边长b=3c,那么sinC=$\frac{{\sqrt{3}}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知方程|$\sqrt{(x-4)^{2}+{y}^{2}}$-$\sqrt{(x+4)^{2}+{y}^{2}}$|=6表示双曲线,则a,b,c分别是多少?

查看答案和解析>>

同步练习册答案