精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,1),以原点为圆心,椭圆短半轴长为半径的圆经过椭圆的焦点.
(1)求椭圆C的方程;
(2)设过点(-1,0)的直线l与椭圆C相交于A、B两点,试问在x轴上是否存在一个定点M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.

分析 (1)由题意可知:b=c,将点代入椭圆方程,即可求得a和b的值,求得椭圆方程;
(2)分类讨论,当斜率存在时,代入椭圆方程,由韦达定理及向量数量积的坐标运算,由$\overrightarrow{MA}$•$\overrightarrow{MB}$恒为定值即可求得m的值,求得$\overrightarrow{MA}$•$\overrightarrow{MB}$的值及M点坐标;
当直线l的斜率k不存在时,点A(-1,$\frac{\sqrt{6}}{2}$),B(-1,-$\frac{\sqrt{6}}{2}$),则m=-$\frac{7}{4}$时,求得$\overrightarrow{MA}$•$\overrightarrow{MB}$的值及M点坐标.

解答 解:(1)由圆的方程x2+y2=b2,由椭圆短半轴长为半径的圆经过椭圆的焦点,则b=c,
∴a2=2b2
将($\sqrt{2}$,1)代入椭圆方程$\frac{{x}^{2}}{2{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,解得:b2=2,则a2=4,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)设A(x1,y1),B(x2,y2),M(m,0),
当直线k的斜率存在,设直线l的方程为:y=k(x+1),
则$\left\{\begin{array}{l}{y=k(x+1)}\\{{x}^{2}+2{y}^{2}-4=0}\end{array}\right.$,整理得:(1+2k2)x2+4k2x+2k2-4=0,
∴x1+x2=-$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{2{k}^{2}-4}{1+2{k}^{2}}$,
则y1y2=k(x1+1)×k(x2+1)=k2(x1x2+x1+x2+1)=k2($\frac{2{k}^{2}-4}{1+2{k}^{2}}$-$\frac{4{k}^{2}}{1+2{k}^{2}}$+1)=-$\frac{3{k}^{2}}{1+2{k}^{2}}$,
$\overrightarrow{MA}$•$\overrightarrow{MB}$=(x1-m)(x2-m)+y1y2=[$\frac{2{k}^{2}-4}{1+2{k}^{2}}$-m×(-$\frac{4{k}^{2}}{1+2{k}^{2}}$)+m2]+(-$\frac{3{k}^{2}}{1+2{k}^{2}}$),
=$\frac{2{k}^{2}-4+4m{k}^{2}+{m}^{2}+2{m}^{2}{k}^{2}-3{k}^{2}}{1+2{k}^{2}}$=$\frac{(2{m}^{2}+4m-1){k}^{2}+{m}^{2}-4}{1+2{k}^{2}}$为定值,
则$\frac{2{m}^{2}+4m-1}{2}$=$\frac{{m}^{2}-4}{1}$,解得:m=-$\frac{7}{4}$,
则$\overrightarrow{MA}$•$\overrightarrow{MB}$=-$\frac{15}{16}$,
当直线l的斜率k不存在时,点A(-1,$\frac{\sqrt{6}}{2}$),B(-1,-$\frac{\sqrt{6}}{2}$),
此时,当m=-$\frac{7}{4}$时,则$\overrightarrow{MA}$•$\overrightarrow{MB}$=(-1-m)(-1-m)-$\frac{3}{2}$=-$\frac{15}{16}$,
综上可知:存在点M(-$\frac{7}{4}$,0),使得$\overrightarrow{MA}$•$\overrightarrow{MB}$=-$\frac{15}{16}$.

点评 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.圆(x+1)2+y2=1的圆心到直线y=x-1的距离为(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow a=(m,2)$,$\overrightarrow b=(2,-1)$,且$\overrightarrow a⊥\overrightarrow b$,则$\frac{|2\overrightarrow a-\overrightarrow b|}{\overrightarrow a•(\overrightarrow a+\overrightarrow b)}$等于(  )
A.$-\frac{5}{3}$B.1C.2D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个人把4根细绳紧握在手中,仅露出它们的头和尾,然后另一人每次任取一个绳头和一个绳尾打结,依次进行直到打完4个结,则放开手后4根细绳恰巧构成4个环的概率为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点P在以原点为顶点,以坐标轴为对称轴的抛物线C上,抛物线C的焦点为F,准线为l,过点P作l的垂线,垂足为Q,若∠PFQ=$\frac{π}{3}$,△PFQ的面积为$\sqrt{3}$,则焦点F到准线l的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.面积为4$\sqrt{3}$的等边三角形ABC中,D是AB边上靠近B的三等分点,则$\overrightarrow{CD}$•$\overrightarrow{AB}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在极坐标系中,已知点A(2,$\frac{π}{2}$),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在四边形ABCD中,∠ABD=45°,∠ADB=30°,BC=1,DC=2,cos∠BCD=$\frac{1}{4}$,则BD=2;三角形ABD的面积为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a、b、c分别为△ABC的内角A、B、C的对边,btanA=2asinB.
(1)求A;
(2)若a=$\sqrt{7}$,2b-c=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案