精英家教网 > 高中数学 > 题目详情
20.已知数列{an}的前n项和为Sn,a1=2,Sn=$\frac{n+2}{3}$an(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}}$}的前n项和Tn

分析 (1)利用an=Sn-Sn-1计算可得an=$\frac{n+1}{n-1}$an-1,累乘可知an=n(n+1),验证n=1时即可;
(2)通过裂项可知$\frac{1}{{a}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,并项相加即可.

解答 解:(1)由题意得当n≥2时,Sn-1=$\frac{n+1}{3}$an-1
∴an=Sn-Sn-1=$\frac{n+2}{3}$an-$\frac{n+1}{3}$an-1
∴an=$\frac{n+1}{n-1}$an-1
∴a2=3a1
a3=$\frac{4}{2}$a2
a4=$\frac{5}{3}$a3

an=$\frac{n+1}{n-1}$an-1
以上各式相乘得:an=$\frac{n(n+1)}{2}$a1=n(n+1),
当n=1时,a1=2也适合上式,
∴an=n(n+1)(n∈N*);
(2)由(1)得an=n(n+1),
∴$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Tn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.

点评 本题考查数列的通项及前n项和,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设实数x、y满足$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\end{array}\right.$,则u=$\frac{y}{x}$的取值范围是[$\frac{1}{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上函数f(x)满足:f(x)=f(-x),f(2+x)=f(2-x),若曲线y=f(x)在x=1处的切线方程为x+y-3=0,则y=f(x)在x=2015的切线方程为(  )
A.x+y-3=0B.x-y-2013=0C.x-y-2015=0D.x-y+2017=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设随机变量ξ~N(μ,σ2),且P(ξ<-2)=P(ξ>2)=0.3,则P(-2<ξ<0)=0.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z1、z2在复平面内的对应点关于原点对称,且z1=2+i,则$\frac{({z}_{1}-1)^{2}}{|{z}_{2}+1|}$等于(  )
A.$\sqrt{2}$iB.$\frac{\sqrt{10}}{5}$iC.$\sqrt{2}$D.4$\sqrt{2}$+3$\sqrt{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=x(ex+ae-x)是定义在R上的偶函数,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知对任意的m∈[$\frac{1}{2}$,3),不等式x2+mx+4>2m+4x恒成立,则x的取值范围是(  )
A.(-∞,-1]∪(2,+∞)B.(-∞,-3)C.(-∞,-1]∪[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z=$\frac{2-i}{1+i}$,则复数z的模|z|=(  )
A.$\frac{\sqrt{10}}{2}$B.1C.10D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{1}{2}$cos(2x+$\frac{5π}{6}$),则y=f(x)的图象可由函数g(x)=$\frac{1}{2}$sin(x+$\frac{π}{2}$)的图象(纵坐标不变)(  )
A.先把各点的横坐标缩短到原来的$\frac{1}{2}$倍,再向右平移$\frac{5π}{12}$个单位
B.先把各点的横坐标伸长到原来的2倍,再向右平移$\frac{5π}{6}$个单位
C.先把各点的横坐标缩短到原来的$\frac{1}{2}$倍,再向左平移$\frac{5π}{12}$个单位
D.先把各点的横坐标伸长到原来的2倍,再向左平移$\frac{5π}{6}$个单位

查看答案和解析>>

同步练习册答案