精英家教网 > 高中数学 > 题目详情
15.复数z1、z2在复平面内的对应点关于原点对称,且z1=2+i,则$\frac{({z}_{1}-1)^{2}}{|{z}_{2}+1|}$等于(  )
A.$\sqrt{2}$iB.$\frac{\sqrt{10}}{5}$iC.$\sqrt{2}$D.4$\sqrt{2}$+3$\sqrt{2}$i

分析 直接由复数z1、z2在复平面内的对应点关于原点对称,且z1=2+i,求出z2=-2-i,然后代入$\frac{({z}_{1}-1)^{2}}{|{z}_{2}+1|}$,化简求值即可得答案.

解答 解:∵复数z1、z2在复平面内的对应点关于原点对称,且z1=2+i,
∴z2=-2-i.
∴$\frac{({z}_{1}-1)^{2}}{|{z}_{2}+1|}$=$\frac{(2+i-1)^{2}}{|-2-i+1|}=\frac{(1+i)^{2}}{|-1-i|}=\sqrt{2}i$.
故选:A.

点评 本题考查了复数代数形式的混合运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知随机变量X的方差V(X)=1,设随机变量Y=2X+3,则V(Y)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$的值域是{2,-2,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法错误的是(  )
A.将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变
B.回归直线$\hat y=\hat bx+\hat a$必过点$(\overline x,\overline y)$
C.在一个2×2列联表中,由计算得随机变量K2的观测值k=13.079,则可以在犯错误的概率不超过0.001的前提下,认为这两个变量间有关系
D.设有一个线性回归方程为$\hat y=3-5\hat x$,则变量x增加一个单位时,y平均增加5个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若α,β为两个不同的平面,m,n为不同直线,下列推理:
①若α⊥β,m⊥α,n⊥β,则直线m⊥n;
②若直线m∥平面α,直线n⊥直线m,则直线n⊥平面α;
③若直线m∥n,m⊥α,n?β,则平面α⊥平面β;
④若平面α∥平面β,直线m⊥平面β,n?α,则直线m⊥直线n;
其中正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,a1=2,Sn=$\frac{n+2}{3}$an(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数(1-ai)(2+i)是纯虚数(i是虚数单位,a是实数),则a=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线y2=4x的焦点为F,P为抛物线上一点,过P作y轴的垂线,垂足为M,若|PF|=4,则△PFM的面积为(  )
A.3$\sqrt{3}$B.4$\sqrt{3}$C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,已知bsinA+a(cosB-$\sqrt{2}$)=0.
(1)求角B的大小;
(2)若△ABC的面积为3,a+c=3+2$\sqrt{2}$,求b.

查看答案和解析>>

同步练习册答案