精英家教网 > 高中数学 > 题目详情
16.在△ABC中,角A,B,C的对边分别为a,b,c,已知bsinA+a(cosB-$\sqrt{2}$)=0.
(1)求角B的大小;
(2)若△ABC的面积为3,a+c=3+2$\sqrt{2}$,求b.

分析 (1)由正弦定理结合sinA≠0,化简可得:sin(B+$\frac{π}{4}$)=1,结合0<B<π,可解得B的值.
(2)由△ABC的面积为3=$\frac{1}{2}$acsinB,整理可得:ac=6$\sqrt{2}$,利用余弦定理即可解得b的值.

解答 解:(1)∵bsinA+a(cosB-$\sqrt{2}$)=0,
∴由正弦定理可得:sinBsinA+sinA(cosB-$\sqrt{2}$)=0,
∴由于sinA≠0,可得:sinB+cosB=$\sqrt{2}$,即:$\sqrt{2}$sin(B+$\frac{π}{4}$)=$\sqrt{2}$,
∴sin(B+$\frac{π}{4}$)=1,
∴结合0<B<π,可得:B+$\frac{π}{4}$=$\frac{π}{2}$,从而解得:B=$\frac{π}{4}$.
(2)∵△ABC的面积为3,a+c=3+2$\sqrt{2}$,
∴由△ABC的面积为3=$\frac{1}{2}$acsinB,整理可得:ac=6$\sqrt{2}$.
∴由余弦定理可得:b2=a2+c2-2accosB=$(a+c)^{2}-2ac-\sqrt{2}ac$=(3+2$\sqrt{2}$)2-2×$6\sqrt{2}$-$\sqrt{2}×6\sqrt{2}$=5.
∴解得:b=$\sqrt{5}$.

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.复数z1、z2在复平面内的对应点关于原点对称,且z1=2+i,则$\frac{({z}_{1}-1)^{2}}{|{z}_{2}+1|}$等于(  )
A.$\sqrt{2}$iB.$\frac{\sqrt{10}}{5}$iC.$\sqrt{2}$D.4$\sqrt{2}$+3$\sqrt{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在R上的单调递增奇函数f(x),若当0≤θ≤$\frac{π}{2}$时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,则实数m的取值范围是(-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(x+m)+n的图象在点(1,f(1))处的切线方程是y=x-1,函数g(x)=ax2+bx(a、b∈R,a≠0)在x=2处取得极值-2.
(1)求函数f(x)、g(x)的解析式;
(2)若函数y=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数)在区间(t,t+$\frac{1}{2}$)没有单调性,求实数t的取值范围;
(3)设k∈Z,当x>1时,不等式k(x-1)<xf(x)+3g′(x)+4恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,CD是AB边上的高,且a2+c2<b2,sin2A+sin2B=1,则sin(A-B)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{1}{2}$cos(2x+$\frac{5π}{6}$),则y=f(x)的图象可由函数g(x)=$\frac{1}{2}$sin(x+$\frac{π}{2}$)的图象(纵坐标不变)(  )
A.先把各点的横坐标缩短到原来的$\frac{1}{2}$倍,再向右平移$\frac{5π}{12}$个单位
B.先把各点的横坐标伸长到原来的2倍,再向右平移$\frac{5π}{6}$个单位
C.先把各点的横坐标缩短到原来的$\frac{1}{2}$倍,再向左平移$\frac{5π}{12}$个单位
D.先把各点的横坐标伸长到原来的2倍,再向左平移$\frac{5π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用辗转相除法求210与162的最大公约数,并用更相减损术检验.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在下列各图中,图中两个变量具有相关关系的图是(  )
A.(1)(2)B.(1)(4)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设p:f(x)=ex+lnx+2x2+mx+1在(0,+∞)上单调递增,q:m≥-5,则p是q的必要不充分条件.

查看答案和解析>>

同步练习册答案