精英家教网 > 高中数学 > 题目详情
4.在△ABC中,a=$\sqrt{5}$,b=3,sinC=2sinA
(Ⅰ)求边长c的长度;
(Ⅱ)求△ABC的面积.

分析 (Ⅰ)由已知及正弦定理即可得解.
(Ⅱ)由余弦定理可求$cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{{2\sqrt{5}}}{5}$,从而解得$sinA=\frac{{\sqrt{5}}}{5}$,利用三角形面积公式即可得解.

解答 解:(Ⅰ)∵sinC=2sinA,由正弦定理可得:c=2a=2×$\sqrt{5}$=2$\sqrt{5}$,
∴$c=2\sqrt{5}$(6分)
(Ⅱ)$cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{{2\sqrt{5}}}{5}$,
∴$sinA=\frac{{\sqrt{5}}}{5}$…(9分)
∴$S=\frac{1}{2}bcsinA=\frac{1}{2}×3×2\sqrt{5}×\frac{{\sqrt{5}}}{5}=3$…(12分)

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式的综合应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知三点坐标分别为:A(-1,-1),B(1,3),C(2,x),且满足三点共线,则x=(  )
A.5B.-5C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点A(4,1),B(0,-1),则线段AB的垂直平分线的方程为(  )
A.y=-2x+4B.y=2x-4C.y=-2x+2D.y=-$\frac{1}{2}$x+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某班40个学生平均分成两组,两组学生某次考试的成绩情况如下表所示:
组别平均数标准差
第一组904
第二组806
求这次考试全班的平均成绩和标准差.( 注:平均数$\overline{x}=\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$,
标准差$s=\sqrt{\frac{1}{n}[{({x_1}-{{\overline{x)}}^2}+{{({x_2}-\bar\overline{x})}^2}+…+{{({x_n}-\bar\overline{x})}^2}}]}=\sqrt{\frac{1}{n}[{(x_1^2+x_2^2+…+x_n^2)-n{{\bar\overline{x}}^2}}]}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求数列{an}的通项公式
(2)令bn=an3n,求{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果方程cos2x+sinx=1+a有解,则a的取值范围是[-3,$\frac{1}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x|x+m|+n,其中m,n∈R
(1)若f(x)为R上的奇函数,求m,n的值;
(2)若常数n=-4,且f(x)<0对任意x∈[0,1]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.幂函数f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$在(0,+∞)上是减函数,则实数m的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z满足(1+i)z=1则z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案