精英家教网 > 高中数学 > 题目详情
14.已知三点坐标分别为:A(-1,-1),B(1,3),C(2,x),且满足三点共线,则x=(  )
A.5B.-5C.4D.-4

分析 根据A、B、C三点共线,斜率kAB、kAC相等,列出方程,求出x的值.

解答 解:∵A(-1,-1),B(1,3),C(2,x)三点共线,
∴kAB=kAC
即$\frac{3+1}{1+1}$=$\frac{x+1}{2+1}$,
解得x=5.
故选:A.

点评 本题考查了利用斜率相等解答三点共线的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.有以下命题:
①对任意的α∈R都有sin3α=3sinα-4sin3α成立;
②对任意的△ABC都有等式a=bcosC+ccosB成立;
③满足“三边是连续的三个正整数且最大角是最小的2倍”的三角形存在且唯一;
④若A,B是钝角△ABC的二锐角,则sinA+sinB<cosA+cosB.
其中正确的命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设同时满足条件:①$\frac{{b}_{n}+{b}_{n+2}}{2}$≥bn+1;②bn≤M(n∈N*,M是与无关的常数)的无穷数列{bn}叫“宏实”数列.已知数列{an}的前项和Sn满足:Sn=$\frac{a}{a-1}$(an-1)(a为常数,且a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{2{S}_{n}}{{a}_{n}}$+1,若数列{bn}为等比数列,求a的值,并证明此时{$\frac{1}{{b}_{n}}$}为“宏实”数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\sqrt{2}$sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)的值是(  )
A.-$\frac{\sqrt{6}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+y-5≥0}\\{2x-y-3≤0}\end{array}\right.$,若使函数Z=ax+by(2b>a>0)的最大值为10,求ab的最大值(  )
A.$\frac{25}{7}$B.$\frac{5}{7}$C.5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在y轴上截距为1,且与直线2x-3y-7=0的夹角为$\frac{π}{4}$的直线方程是5x-y+1=0或x+5y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点(0,2)关于直线x+2y-1=0的对称点是(  )
A.(-2,0)B.(-1,0)C.$(-\frac{6}{5},-\frac{2}{5})$D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}中,a1=55,an+1=an+2n-1,n∈N*,则$\frac{a_n}{n}$的最小值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a=$\sqrt{5}$,b=3,sinC=2sinA
(Ⅰ)求边长c的长度;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

同步练习册答案