精英家教网 > 高中数学 > 题目详情
12.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2t}\\{y=16{t}^{2}-9}\end{array}\right.$(t为参数),倾斜角等于$\frac{2π}{3}$的直线l经过P,在以原点O为极点,x轴正半轴为极轴的极坐标系中,点P的极坐标为(1,$\frac{π}{2}$)
(1)求点P的直角坐标;
(2)设l与曲线C交于A、B两点,求|PA|•|PB|的值.

分析 (1)根据x=ρcosθ、y=ρsinθ可得点P的直角坐标;
(2)利用参数的几何意义,即可求|PA|•|PB|.

解答 解:(1)点P的极坐标为(1,$\frac{π}{2}$),直角坐标为(0,1)
(2)倾斜角等于$\frac{2π}{3}$的直线l经过P,参数方程为$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$,
曲线C的参数方程为$\left\{\begin{array}{l}{x=2t}\\{y=16{t}^{2}-9}\end{array}\right.$,普通方程为y=4x2-9,
代入可得t2-$\frac{\sqrt{3}}{2}$t-10=0,
∵点P的坐标为(0,1),
∴|PA|•|PB|=-10.

点评 本小题主要考查参数方程、极坐标方程等基础知识,考查参数的几何意义,考查运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,∠ACB=90°,E是棱CC1上的动点,F是AB的中点,AC=1,BC=2,AA1=4.当E为CC1中点时,
(1)标出所有点坐标;
(2)求异面直线AE与CF所成角的余弦值;
(3)求面CFB1,AB1E的法向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.国家规定个人稿费的纳税办法为:不超过800元的不纳税;超过800元不超过4000的按超过800元的部分的14%纳税;超过4000元的按全部稿费的11%纳税.
(1)试根据上述规定建立某人所得稿费x元与纳税额y的函数关系式;
(2)某人出了一本书.共纳税420元,则这个人的稿费是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一个限速40km/h以内的变道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但两车还是撞上了,事后现场测得甲车的刹车距离略超过12m,乙车的刹车距离超过10m,又知甲、乙两辆汽车的刹车距离s(m)与车速x(km/h)之间分别有如下关系:s=0.1x+0.01x2   s=0.05x+0.005x2 问两车相碰的主要责任是谁?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(1,0),点(-1,$\frac{\sqrt{2}}{2}$)在椭圆C上,点T满足$\overrightarrow{OT}$=$\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$•$\overrightarrow{OF}$(其中O为坐标原点),过点F作一斜率为1的直线交椭圆于P、Q两点(其中P点在x轴上方,Q点在x轴下方)
(1)求椭圆C的方程;
(2)求△PQT的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.参数方程$\left\{\begin{array}{l}{x=2+si{n}^{2}θ}\\{y=-1+2co{s}^{2}θ}\end{array}\right.$(θ为参数)化为普通方程是(  )
A.2x-y+5=0B.2x+y-5=0C.2x-y+5=0(2≤x≤3)D.2x+y-5=0(2≤x≤3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线y2=8x,过点P(2,0)作倾斜角为α的直线l,直线l与抛物线交于A、B两点.
(1)当α=45°时,写出直线l的参数方程;
(2)当α=45°时,求线段AB的中点M到点P的距离和中点M的坐标;
(3)若α为任意角,求2($\frac{1}{|AP|}$+$\frac{1}{|BP|}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知关于x的方程x2+(m-17)x+(m-2)=0的两个根都是正实数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.“光盘行动”倡导厉行节约,反对铺张浪费,带动大家珍惜粮食,吃光盘子中的食物,得到从中央到民众的支持,为了解某地响应“光盘行动”的实际情况,某校几位同学组成研究性学习小组,从某社区[25,55]岁的人群中随机抽取n人进行了一次调查,得到如下统计表:
组数分组频数频率“光盘族”占本组比例
第1组[25,30)500.0530%
第2组[30,35)1000.1030%
第3组[35,40)1500.1540%
第4组[40,45)2000.2050%
第5组[45,50)ab65%
第6组[50,55)2000.2060%
(Ⅰ)求a,b的值,并估计本社区[25,55]岁的人群中“光盘族”所占比例;
(Ⅱ)从年龄段在[35,40)与[40,45)的“光盘族”中,采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.
(i)已知选取2人中1人来自[35,40)中的前提下,求另一人来自年龄段[40,45)中的概率;
(ii)求2名领队的年龄之和的期望值(每个年龄段以中间值计算).

查看答案和解析>>

同步练习册答案