精英家教网 > 高中数学 > 题目详情
1.在一个限速40km/h以内的变道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但两车还是撞上了,事后现场测得甲车的刹车距离略超过12m,乙车的刹车距离超过10m,又知甲、乙两辆汽车的刹车距离s(m)与车速x(km/h)之间分别有如下关系:s=0.1x+0.01x2   s=0.05x+0.005x2 问两车相碰的主要责任是谁?

分析 根据甲乙的刹车距离,求出对应的车速,进行比较即可.

解答 解:由s=0.1x+0.01x2=12,
即x2+10x-1200=0,
则(x-30)(x+40)=0,
∵x为正数,∴x=30,
由于甲距离略大于12m,所以甲速度略大于30km/h,
由s=0.05x+0.005x2=10,
即 x2+10x-2000=0,
∴(x-40)(x+50)=0,
∵x为正数,
∴x=40,
由于乙距离超过10m,
∴乙速度大于40km/h,
∴责任在于乙.

点评 本题主要考查函数的应用问题,根据一元二次方程求出x是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.下列有关命题的说法中,正确的是①(填所有正确答案的序号).
①命题“若x2-1=0,则x=1”的逆否命题为“若x≠1,则x2-1≠0”;
②已知命题p:x=1且y=1,命题q:x+y=2,则命题p是命题q的必要不充分条件.
③命题p:$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m-4}$=1表示椭圆为真命题,则实数m的取值范围是1<m<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设甲、乙两城之间有一列火车作为交通车,已知该列车每次拖挂5节车厢,一天能往返14次,而如果每次拖挂8节车厢,则每天能往返8次.每天往返的次数是每次拖挂车厢节数的一次函数,并设每节车厢能载客100人.
(1)求这列火车往返次数y与每次拖挂车厢节数x的函数关系;
(2)问这列火车每天往返多少次,每次应挂多少节车厢才能使营运人数最多?并求出每天最多营运人数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是某几何体的三视图,则该几何体的体积为256+64π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列叙述不正确的是(  )
A.无穷小量与无穷大量的商为无穷小量
B.无穷小量与有界量的积是无穷小量
C.无穷大量与有界量的积是无穷大量
D.无穷大量与无穷大量的积是无穷大量

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=2ex-mx在区间[-1,0]上不单调,则实数m的取值范围为[$\frac{2}{e}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2t}\\{y=16{t}^{2}-9}\end{array}\right.$(t为参数),倾斜角等于$\frac{2π}{3}$的直线l经过P,在以原点O为极点,x轴正半轴为极轴的极坐标系中,点P的极坐标为(1,$\frac{π}{2}$)
(1)求点P的直角坐标;
(2)设l与曲线C交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知一元二次方程x2+ax+b=0的一个根在[-2,-1]内,另一个根在[1,2]内,使用图表示出以a,b为坐标轴的点(a,b)的存在范围,并求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知动直线kx-y+4-3k=0与圆x2+y2-6x-8y+24=0交于A,B两点,平面上的动点P满足:|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=4,则动点P到坐标原点O的距离的最大值为多少.

查看答案和解析>>

同步练习册答案