精英家教网 > 高中数学 > 题目详情
2.已知等比数列{an}的首项a1=$\frac{1}{3}$,公比q满足q>0且q≠1,又已知a1,5a3,9a5成等差数列;
(1)求数列{an}的通项公式;
(2)令bn=log3$\frac{1}{a_n}$,记Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,是否存在最大的整数m,使得对任意n∈N*,均有Tn>$\frac{m}{16}$成立?若存在,求出m,若不存在,请说明理由.

分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)利用“裂项求和”方法与数列的单调性即可得出.

解答 解:(1)∵a1,5a3,9a5成等差数列,
∴10a3=a1+9a5
∴$10{a_1}{q^2}={a_1}+9{a_1}{q^4}$,又由${a_1}=\frac{1}{3}$得9q4-10q2+1=0,
解得q2=1或${q^2}=\frac{1}{9}$,又由q>0且q≠1得$q=\frac{1}{3}$,
∴${a_n}={({\frac{1}{3}})^n}$.
(2)∵${b_n}={log_3}\frac{1}{a_n}=n$,
∴${T_n}=\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{{n({n+1})}}$=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+1}$=$1-\frac{1}{n+1}$.
由Tn为关于n的增函数,故${({T_n})_{min}}={T_1}=\frac{1}{2}$,于是欲使${T_n}>\frac{m}{16}$对任意n∈N*恒成立,
则$\frac{m}{16}<\frac{1}{2}$,则m<8,∴存在最大的整数m=7满足题意.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.两圆x2+y2-6x+16y-48=0与x2+y2+4x-8y-44=0的公切线条数为(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.试求二次函数f(x)=x2-2ax+4在区间[1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是(  )
A.8B.32C.16D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=f(x),x∈D,若存在常数C,对任意x1∈D,存在唯一的x2∈D,使得$\sqrt{f({x_1})•f({x_2})}=C$,则称常数C是函数f(x)在D上的“湖中平均数”.若已知函数$f(x)={({\frac{1}{2}})^x},x∈[{0,2016}]$,则f(x)在[0,2016]上的“湖中平均数”是$(\frac{1}{2})^{1008}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在平行六面体ABCD-A1B1C1D1中,已知$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{A{A_1}}=\overrightarrow c$,则用向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$可表示向量$\overrightarrow{B{D_1}}$等于(  )
A.$\overrightarrow a+\overrightarrow b+\overrightarrow c$B.$\overrightarrow a-\overrightarrow b+\overrightarrow c$C.$\overrightarrow a+\overrightarrow b-\overrightarrow c$D.$-\overrightarrow a+\overrightarrow b+\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α,β∈(0,$\frac{π}{2}$),且$\frac{sinα}{α}$<$\frac{sinβ}{β}$,则下列结论正确的是(  )
A.α<βB.α+β>$\frac{π}{2}$C.α>βD.α+β<$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin1cos2tan3的值为(  )
A.负数B.正数C.0D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算($\root{3}{2}$)6-$\frac{7}{5}$×($\frac{49}{25}$)${\;}^{-\frac{1}{2}}}$-3π0+$\frac{{\sqrt{a\sqrt{a}}}}{{\root{4}{a^3}}}$=1.

查看答案和解析>>

同步练习册答案