分析 根据已知中函数y=f(x),x∈D,若存在常数C,对?x1∈D,?唯一的x2∈D,使得$\sqrt{f({x_1})•f({x_2})}=C$,则称常数C是函数f(x)在D上的“湖中平均数”.根据函数f(x)=($\frac{1}{2}$)x,x∈[0,2016],为单调减函数,可得f(x)在[0,2016]上的“湖中平均数”是其最大值和最小值的几何平均数
解答 解:由已知中湖中平均数的定义可得C即为函数y=f(x),x∈D最大值与最小值的几何平均数
又∵函数f(x)=($\frac{1}{2}$)x,x∈[0,2016]为减函数
故其最大值M=1,最小值m=($\frac{1}{2}$)2016
故C=$\sqrt{(\frac{1}{2})^{2016}}$=$(\frac{1}{2})^{1008}$;
故答案为:${(\frac{1}{2})^{1008}}$
点评 本题考查的知识点是函数单调性的性质,其中根据已知判断出C等于函数在区间D上最大值与最小值的几何平均数,是解答本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 输出a,b,c的最大值 | B. | 输出a,b,c的最小值 | ||
| C. | 将a,b,c从大到小排列 | D. | 将a,b,c从小到大排列 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 不全相等 | B. | 均不相等 | ||
| C. | 都相等,且为$\frac{1}{40}$ | D. | 都相等,且为$\frac{25}{1006}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0,$\frac{π}{2}$,π,$\frac{3π}{2}$,2π | B. | 0,$\frac{π}{4}$,$\frac{π}{2}$,$\frac{3π}{4}$,π | C. | 0,$\frac{π}{8}$,$\frac{π}{4}$,$\frac{3π}{8}$,$\frac{π}{2}$ | D. | 0,$\frac{π}{6}$,$\frac{π}{3}$,$\frac{3π}{2}$,$\frac{2}{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com