精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列.
(Ⅰ)求数列{an},的通项公式;
(Ⅱ)设数列{bn},满足bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求证:b1+b2+b3+…+bn<$\frac{1}{2}$.

分析 (I)由a2,a5,a14成等比数列得,(a52=a2•a14,转化为公差的方程解之;
(II)利用(I)得到bn,利用裂项求和即可.

解答 解:(I)由a2,a5,a14成等比数列得,(a52=a2•a14,…(2分)
即(1+4d)2=(1+d)(1+13d)
解得,d=2或d=0(舍)          …(4分)
an=2n-1        …(6分)
(II)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$)     …(8分)
所以b1+b2+b3+…+bn=$\frac{1}{2}$(1-$\frac{1}{3}$$+\frac{1}{3}$-$\frac{1}{5}$…+$\frac{1}{2n-1}-\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{1}{2}$.…(12分)

点评 本题考查了等差数列通项公式的求法以及利用裂项求和的方法;经常考查,注意掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知抛物线C的方程x2=2px,M(2,1)为抛物线C上一点,F为抛物线的焦点.
( I)求|MF|;
( II)设直线l2:y=kx+m与抛物线C有唯一公共点P,且与直线l1:y=-1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a,b,c分别是角A,B,C的对边,且关于x的不等式x2-(a2+bc)x+m<0(m∈R)解集为(b2,c2).
(1)求角A的大小;
(2)若a=$\sqrt{6}$,设B=θ,△ABC的周长为y,求y=f(θ)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数y=sin2x+acos2x的图象关于直线x=-$\frac{π}{8}$对称,则a=(  )
A.$-2-2\sqrt{2}$B.$-2+2\sqrt{2}$C.$2\sqrt{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球.乙箱子里装有1个白球、2个黑球.每次游戏从这两个箱子里随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏结束后,?①摸出3个白球的概率??②获奖的概率?
(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.两圆x2+y2-6x+16y-48=0与x2+y2+4x-8y-44=0的公切线条数为(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设an=-n2+9n+10,则数列{an}前n项和最大值n的值为(  )
A.4B.5C.9或10D.4或5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某个体服装店经营某种服装,在某周内获利y(元)与该周每天销售这种服装件数x之间的一组数据关系如下表
x3456789
y66697381899091
(参考数值:$\sum_{i=1}^{7}$xiyi=3487,$\sum_{i=1}^{7}$xi2=280)
(1)求$\overline{x}$、$\overline{y}$
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=$\widehat{b}$x+$\widehat{a}$;(精确到0.01)
(3)若该周内某天销售服装20件,估计可获利多少元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=f(x),x∈D,若存在常数C,对任意x1∈D,存在唯一的x2∈D,使得$\sqrt{f({x_1})•f({x_2})}=C$,则称常数C是函数f(x)在D上的“湖中平均数”.若已知函数$f(x)={({\frac{1}{2}})^x},x∈[{0,2016}]$,则f(x)在[0,2016]上的“湖中平均数”是$(\frac{1}{2})^{1008}$.

查看答案和解析>>

同步练习册答案