精英家教网 > 高中数学 > 题目详情
2.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球.乙箱子里装有1个白球、2个黑球.每次游戏从这两个箱子里随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏结束后,?①摸出3个白球的概率??②获奖的概率?
(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).

分析 (1)设“摸出3个白球”为事件A,则必须从甲箱子里摸出2个白球,从乙箱子里摸出1个白球与1个黑球.可得P(A)=$\frac{{∁}_{3}^{2}•{∁}_{1}^{1}{∁}_{2}^{1}}{{∁}_{5}^{2}•{∁}_{3}^{2}}$.
②设“获奖”为事件B,B包括两种情况:一种是从甲箱子里摸出1个白球与一个黑球,从乙箱子里摸出1个白球与1个黑球;另一种是从甲箱子里摸出2个白球,从乙箱子里3个球中摸出2个球.可得P(B).
(2)由(1)②可知:在1次游戏中,“获奖”的概率P=$\frac{7}{10}$,因此X~B$(2,\frac{7}{10})$.利用P(X=k)=${∁}_{2}^{k}(\frac{3}{10})^{2-k}•(\frac{7}{10})^{k}$,(k=0,1,2),即可得出分布列与数学期望.

解答 解:(1)设“摸出3个白球”为事件A,则必须从甲箱子里摸出2个白球,从乙箱子里摸出1个白球与1个黑球.
∴P(A)=$\frac{{∁}_{3}^{2}•{∁}_{1}^{1}{∁}_{2}^{1}}{{∁}_{5}^{2}•{∁}_{3}^{2}}$=$\frac{1}{5}$.
②设“获奖”为事件B,B包括两种情况:一种是从甲箱子里摸出1个白球与一个黑球,从乙箱子里摸出1个白球与1个黑球;另一种是从甲箱子里摸出2个白球,从乙箱子里3个球中摸出2个球.
则P(B)=$\frac{{∁}_{3}^{1}{∁}_{2}^{1}•{∁}_{1}^{1}{∁}_{2}^{1}+{∁}_{3}^{2}•{∁}_{3}^{2}}{{∁}_{5}^{2}•{∁}_{3}^{2}}$=$\frac{7}{10}$.
(2)由(1)②可知:在1次游戏中,“获奖”的概率P=$\frac{7}{10}$,因此X~B$(2,\frac{7}{10})$.P(X=k)=${∁}_{2}^{k}(\frac{3}{10})^{2-k}•(\frac{7}{10})^{k}$,(k=0,1,2).

 X 0 1 2
 P $\frac{9}{100}$ $\frac{42}{100}$ $\frac{49}{100}$
∴E(X)=$2×\frac{7}{10}$=75.

点评 本题考查了古典概率与相互独立及互斥事件的概率计算公式、二项分布列的计算公式与数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.执行如图所示的程序框图,当输出(x,-8)时,则x=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\sqrt{3}$sinx-acosx 的图象的一条对称轴是x=$\frac{5π}{3}$,则g(x)=asinx+cosx=Asin(ωx+φ)(A>0,ω>0)的一个初相是(  )
A.-$\frac{3π}{4}$B.-$\frac{π}{4}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\frac{{x}^{2}+1}{x}$的奇偶性为(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=sinx-cosx,x∈[0,$\frac{π}{2}$]的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列.
(Ⅰ)求数列{an},的通项公式;
(Ⅱ)设数列{bn},满足bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求证:b1+b2+b3+…+bn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆x2+y2=16,直线l:y=x+b.圆上至少有三个点到直线l的距离等于1,则b的取值范围是-3$\sqrt{2}$≤b≤3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.算法流程图如图所示,其输出结果是127.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在各项均为正数的等比数列{an}中,a2=3,a1+a3=10,求Sn

查看答案和解析>>

同步练习册答案