精英家教网 > 高中数学 > 题目详情
已知A(3,5,7),B(-2,4,3),求
AB
BA
,线段AB的中点坐标及线段AB的长.
考点:空间两点间的距离公式
专题:空间位置关系与距离
分析:直接利用空间向量以及中点坐标公式和距离公式求解即可.
解答: 解:A(3,5,7),B(-2,4,3),
AB
=(-5,-1,-4),
BA
=(5,1,4)
线段AB的中点坐标(
1
2
3
2
,5)
线段AB的长:
(3+2)2+(5-4)2+(7-3)2
=
42
点评:本题考查空间向量以及中点坐标公式的应用,空间两点间的距离的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα=
4
5
π
2
<α<π,cosβ=
5
13
,0<β<π.
(1)求sin(α+β)的值;
(2)求tan(2α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是R,且对?x,y∈R,都有f(x+y)=f(x)+f(y)成立.
(1)试判断f(x)的奇偶性;
(2)若当x>0时,f(x)>0,判断函数的单调性;
(3)若f(8)=4,求f(-
1
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,2)、B(-1,2),动点P满足AP⊥BP,若双曲线
x2
a2
-
y2
b2
-=1的一条渐近线与动点P的轨迹没有公共点,则双曲线离心率的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
4
=1(a>0)的渐近线方程为2x±3y=0,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=a+b
3
,a,b∈Z},x1,x2∈A,下列结论不正确的是(  )
A、x1+x2∈A
B、x1-x2∈A
C、x1x2∈A
D、当x2≠0时,
x1
x2
∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

将圆x2+y2=4上点的横坐标保持不变,纵坐标变为原来的一半,所得曲线设为E.
(1)求曲线E的方程;
(2)若曲线E与x轴、y轴分别交于点A(a,0),B(-a,0),C(0,b),其中a>0,b>0.过点C的直线l与曲线E交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.当点P异于点B时,求证:
OP
OQ
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
,且|
a
|=1,|
b
|=2,(
a
+2
b
)⊥(3
a
-
b
).
(Ⅰ)求向量
a
b
夹角的大小;
(Ⅱ)求|
a
-2
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+mx-m.
(1)若函数f(x)在[-1,0]上单调递减,求实数m的取值范围;
(2)是否存在实数m,使得f(x)在定义域[2,3]上的值域恰好是[2,3]?若存在,求出实数m的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案