精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3-6x2+2.
(1)当x∈[-a,a](a>0)时,求f(x)的最大值;
(2)设g(x)=|f(x)-k|(x∈[0,6]),用?(k)表示g(x)的最大值,求?(k)的解析式、?(k)的最小值及相应的k的值.
分析:(1)求出f′(x)=0时x的值,然后分区间讨论函数的增减性得到函数的极大值点为0,然后讨论a的范围得到f(x)的最大值;
(2)根据(1)求出f(x)的值域为[-30,2],然后求出f(x)-k的值域,最大大于最小得到关于k的不等式,求出k的范围,讨论k的范围来取函数g(x)的最大值即?(k),从而得到?(k)即k的值.
解答:精英家教网解:(1)解f′(x)=3x2-12x=0得x=0或x=4.
由f(x)=x3-6x2+2=f(0)得x=0或x=6,
所以f(x)的最大值M=
2,0<a≤6
f(a),a>6



(2)由(1)知f(x)在x∈[0,6]的值域是[f(4),f(6)]或[f(4),f(0)],即[-30,2],
所以f(x)-k在x∈[0,6]的值域是[-30-k,2-k],由|-30-k|>|2-k|解得k>-14,
由|-30-k|≤|2-k|解得k≤-14,
所以?(k)=
|k+30|,k>-14
|k-2|,k≤-14

从而?(k)的最小值为m=16,相应的k=-14.
点评:让学生理解函数的最值及几何意义,会利用导数研究函数的极值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案