精英家教网 > 高中数学 > 题目详情
9.已知集合A只含有一个元素a,则下列各式中正确的是(  )
A.0∈AB.a∈AC.3∉AD.a=A

分析 集合A只含有一个元素a,可得A={a},即可判断出结论.

解答 解:∵集合A只含有一个元素a,∴A={a},∴a∈A.
因此B正确.
故选:B.

点评 本题考查了元素与集合之间的关系及其性质,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.把一个含45°角的直角三角板BEF和一个正方形ABCD叠放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)
(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.
猜想与发现:
(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.
①MB,BN的数量关系是相等;
②MB,BN的位置关系是垂直.
变式与探究:
(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a,b,m,n∈R,且a2+b2=3,ma+nb=3,则$\sqrt{{m}^{2}{+n}^{2}}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法中正确的是(  )
A.命题“若a>b>0,则$\frac{1}{a}$<$\frac{1}{b}$”的逆命题是真命题
B.命题p:?x∈R,x2-x+1>0,则¬p:?x0∈R,x02-x0+1<0
C.“a>1,b>1”是“ab>1”成立的充分条件
D.在某项测量中,测量结果x服从正态分布N(1,σ2)(σ>0),若x在(0,1)内取值的概率为0.4,则x在(0,2)内取值的概率为0.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).
已知某种二元码x1x2…x7的码元满足如下校验方程组:⊕$\left\{\begin{array}{l}{{x}_{4}⊕{x}_{5}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{2}⊕{x}_{3}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{1}⊕{x}_{3}⊕{x}_{5}⊕{x}_{7}=0}\end{array}\right.$,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,某城市有一块半径为40m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD=80m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为Scm2.设∠AOC=xrad.
(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.二次函数y=ax2+(b-8)x-a-ab,当-3<x<2时,y>0,当x<-3或x>2时y<0.
(1)求二次函数的解析式;
(2)求y=ax2+(b-8)x-a-ab在0≤x≤1时y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求直线l:2x-y+3=0,关于y=-x对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知变量x,y满足条件$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤2}\\{2y-x≥1}\end{array}\right.$,
(1)求z=2x+y的取值范围;
(2)求$\sqrt{(x-1)^{2}+{y}^{2}}$的最小值;
(3)求$\frac{y+1}{x+1}$的取值范围.

查看答案和解析>>

同步练习册答案