精英家教网 > 高中数学 > 题目详情
4.为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).
已知某种二元码x1x2…x7的码元满足如下校验方程组:⊕$\left\{\begin{array}{l}{{x}_{4}⊕{x}_{5}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{2}⊕{x}_{3}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{1}⊕{x}_{3}⊕{x}_{5}⊕{x}_{7}=0}\end{array}\right.$,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于5.

分析 根据二元码x1x2…x7的码元满足的方程组,及“⊕”的运算规则,将k的值从1至7逐个验证即可.

解答 解:依题意,二元码在通信过程中仅在第k位发生码元错误后变成了1101101,
①若k=1,则x1=0,x2=1,x3=0,x4=1,x5=1,x6=0,x7=1,
从而由校验方程组,得x4⊕x5⊕x6⊕x7=1,故k≠1;
②若k=2,则x1=1,x2=0,x3=0,x4=1,x5=1,x6=0,x7=1,
从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠2;
③若k=3,则x1=1,x2=1,x3=1,x4=1,x5=1,x6=0,x7=1,
从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠3;
④若k=4,则x1=1,x2=1,x3=0,x4=0,x5=1,x6=0,x7=1,
从而由校验方程组,得x1⊕x3⊕x5⊕x7=1,故k≠4;
⑤若k=5,则x1=1,x2=1,x3=0,x4=1,x5=0,x6=0,x7=1,
从而由校验方程组,得x4⊕x5⊕x6⊕x7=0,x2⊕x3⊕x6⊕x7=0,x1⊕x3⊕x5⊕x7=0,
故k=5符合题意;
⑥若k=6,则x1=1,x2=1,x3=0,x4=1,x5=1,x6=1,x7=1,
从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠6;
⑦若k=7,则x1=1,x2=1,x3=0,x4=1,x5=1,x6=0,x7=0,
从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠7;
综上,k等于5.
故答案为:5.

点评 本题属新定义题,关键是弄懂新定义的含义或规则,事实上,本题中的运算符号“⊕”可看作是两个数差的绝对值运算,知道了这一点,验证就不是难事了.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=|2x-3|+ax-6(a是常数,a∈R)
(Ⅰ)当a=1时,求不等式f(x)≥0的解集;
(Ⅱ)如果函数y=f(x)恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线l将圆x2+y2+2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是(  )
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.2x-y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:$\left\{\begin{array}{l}{x+y-7≤0}\\{x-y+3≥0}\\{y≥0}\end{array}\right.$,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为(  )
A.5B.29C.37D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知运算○按下面的方式定义:a○b=2a-ab,若整数x,y使(2○x)○y=400成立,则在所有满足条件的整数对(x,y)中,x+y的最大值为205.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A只含有一个元素a,则下列各式中正确的是(  )
A.0∈AB.a∈AC.3∉AD.a=A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l过点A(3,4),且点B(2,1)到直线l的距离为1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前100项和为(  )
A.3690B.5050C.1845D.1830

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一手机厂生产A,B,C三种型号的手机,每种型号的手机均有低配版和高配版两种版本,某季度的产量如表(单位:万部):
型号A型号B型号C
高配性1020z
低配型305060
按型号用分层抽样的方法在这个季度生产的手机中抽取40部检验,其中有A型号手机8部.
(1)求z的值;
(2)用分层抽样的方法在C型号的手机中抽取一个容量为6的样本,从这6个样本中任取2部手机,求至少有1部高配版手机的概率;
(3)用随机抽样的方法从B型号的手机中抽取8部,经检验它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.从这8个数中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

同步练习册答案