精英家教网 > 高中数学 > 题目详情
15.直线l将圆x2+y2+2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是(  )
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.2x-y+4=0

分析 由条件可得得直线l经过圆x2+y2+2x-4y=0的圆心(-1,2),利用两条直线垂直的性质求得直线l的斜率,再利用点斜式求得直线l的方程.

解答 解:由题意直线l将圆x2+y2+2x-4y=0平分,且与直线x+2y=0垂直,
可得直线l经过圆x2+y2+2x-4y=0的圆心(-1,2),且斜率为2,
故直线l的方程为y-2=2(x+1),即2x-y+4=0,
故选:D.

点评 本题主要考查直线和圆的位置关系,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.从抛物线Γ:x2=4y外一点P引抛物线Γ的两条切线PA和PB(切点为A,B),分别与x轴相交于C,D,若AB与y轴相交于点Q.
(Ⅰ)求证:四边形PCQD是平行四边形;
(Ⅱ)四边形PCQD能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\left\{\begin{array}{l}{(2x-1{)e}^{-x},x≥0}\\{f(x+1),x<0}\end{array}\right.$在区间[-10,10]上零点个数为(  )
A.11个B.10个C.22个D.20个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过抛物线L:x2=2py(p>0)的焦点F且斜率为$\frac{3}{4}$的直线与抛物线L在第一象限的交点为P,且|PF|=5
(1)求抛物线L的方程;
(2)设直线l:y=kx+m与抛物线L交于A(x1,y1),B(x2,y2)两点.
(ⅰ)若k=2,线段AB的垂直平分线分别交y轴和抛物线L于M,N两点,(M,N位于直线l两侧),当四边形AMBN为菱形时,求直线l的方程;
(ⅱ)若直线l过点,且交x轴于点C,且$\overrightarrow{CA}$=a$\overrightarrow{AF}$,$\overrightarrow{CB}$=b$\overrightarrow{BF}$,对任意的直线l,a+b是否为定值?若是,求出a+b的值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设O为锐角△ABC的外心,cos∠BAC=$\frac{1}{3}$,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x+y的最大值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a,b,m,n∈R,且a2+b2=3,ma+nb=3,则$\sqrt{{m}^{2}{+n}^{2}}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合S中的元素是正整数,且满足命题“如果x∈S,则(10-x)∈S”,回答下列问题:
(1)试写出只有一个元素的S.
(2)试写出元素个数为2的全部S.
(3)满足上述命题的集合S共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).
已知某种二元码x1x2…x7的码元满足如下校验方程组:⊕$\left\{\begin{array}{l}{{x}_{4}⊕{x}_{5}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{2}⊕{x}_{3}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{1}⊕{x}_{3}⊕{x}_{5}⊕{x}_{7}=0}\end{array}\right.$,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|x2+ax+12=0},B={x|x2+bx+c=0},A∩B={2},A∪B={2,6},求a,b,c的值.

查看答案和解析>>

同步练习册答案