精英家教网 > 高中数学 > 题目详情
19.已知运算○按下面的方式定义:a○b=2a-ab,若整数x,y使(2○x)○y=400成立,则在所有满足条件的整数对(x,y)中,x+y的最大值为205.

分析 由题意,(2○x)○y=(4-2x)○y=8-4x-(4-2x)y=(4-2x)(2-y)=400,可得(x-2)(y-2)=200,利用x,y是整数,即可求出x+y的最大值.

解答 解:由题意,(2○x)○y=(4-2x)○y=8-4x-(4-2x)y=(4-2x)(2-y)=400,
∴(x-2)(y-2)=200,
∵x,y是整数,
∴x-2=1,y-2=200或x-2=200,y-2=1时,x+y取得最大值205,
故答案为:205.

点评 本题考查合情推理,考查新定义,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,则当△AEF的面积最大时,BC=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设O为锐角△ABC的外心,cos∠BAC=$\frac{1}{3}$,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x+y的最大值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合S中的元素是正整数,且满足命题“如果x∈S,则(10-x)∈S”,回答下列问题:
(1)试写出只有一个元素的S.
(2)试写出元素个数为2的全部S.
(3)满足上述命题的集合S共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,分别过椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)左右焦点F1,F2的两条不同动直线l1,l2相交于P点,l1,l2与椭圆E分别交于A,B与C,D不同四点,直线OA,OB,OC,OD的斜率k1,k2,k3,k4满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=4,|CD|=3.
(1)求椭圆E的方程;
(2)是否存在定点M,N,使得|PM|+|PN|为定值,若存在,求出M,N点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).
已知某种二元码x1x2…x7的码元满足如下校验方程组:⊕$\left\{\begin{array}{l}{{x}_{4}⊕{x}_{5}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{2}⊕{x}_{3}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{1}⊕{x}_{3}⊕{x}_{5}⊕{x}_{7}=0}\end{array}\right.$,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$,则$\overrightarrow{MC}$•$\overrightarrow{MD}$的值为(  )
A.-$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{2}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-$\frac{a}{x}$(a>0).
(1)判断f(x)的奇偶性;
(2)证明f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值是$\frac{7}{4}$,最小值是$\frac{3}{4}$,求函数的解析式f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案