14£®Èçͼ£¬·Ö±ð¹ýÍÖÔ²E£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©×óÓÒ½¹µãF1£¬F2µÄÁ½Ìõ²»Í¬¶¯Ö±Ïßl1£¬l2ÏཻÓÚPµã£¬l1£¬l2ÓëÍÖÔ²E·Ö±ð½»ÓÚA£¬BÓëC£¬D²»Í¬Ëĵ㣬ֱÏßOA£¬OB£¬OC£¬ODµÄбÂÊk1£¬k2£¬k3£¬k4Âú×ãk1+k2=k3+k4£¬ÒÑÖªµ±l1ÓëxÖáÖØºÏʱ£¬|AB|=4£¬|CD|=3£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚ¶¨µãM£¬N£¬Ê¹µÃ|PM|+|PN|Ϊ¶¨Öµ£¬Èô´æÔÚ£¬Çó³öM£¬Nµã×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©µ±l1ÓëxÖáÖØºÏʱ£¬CD¡ÍxÖᣬÓÉ´ËÁгö·½³Ì×éÇó³öa£¬b£¬´Ó¶øÄÜÇó³öÍÖÔ²EµÄ·½³Ì£®
£¨2£©µ±l1ÓëxÖáÖØºÏʱ£¬l2¡ÍxÖᣬPµã¼´F2£¨1£¬0£©£¬µ±l2ÓëxÖáÖØºÏʱ£¬l1¡ÍxÖᣬPµã¼´F1£¨-1£¬0£©£¬µ±l1£¬l2²»ÓëxÖáÖØºÏʱ£¬ÉèP£¨x0£¬y0£©£¨x0¡Ù¡À1£¬y0¡Ù0£©£¬Éèl1£ºy=m£¨x+1£©£¬l2£ºy=n£¨x-1£©£¬ÍÖÔ²E£º$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬·Ö±ð½«Ö±Ïßl1£¬l2ÓëÍÖÔ²ÁªÁ¢£¬ÔÙÀûÓÃΤ´ï¶¨Àí¡¢Ö±Ïß·½³Ì£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ö´æÔÚ¶¨µãM¡¢NΪÍÖÔ²½¹µã$£¨{0£¬¡À\sqrt{2}}£©$£¬Ê¹µÃ|PM|+|PN|Ϊ¶¨ÖµÎª¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©µ±l1ÓëxÖáÖØºÏʱ£¬k1=k2=0£¬
¡àk3+k4=0£¬¡àCD¡ÍxÖᣬ
|AB|=2a=4£¬|CD|=$\frac{2{b}^{2}}{a}=3$£¬
¡à$\left\{\begin{array}{l}{2a=4}\\{\frac{2{b}^{2}}{a}=3}\end{array}\right.$£¬½âµÃa=2£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®¡­£¨5·Ö£©
£¨¢ò£©µ±l1ÓëxÖáÖØºÏʱ£¬l2¡ÍxÖᣬPµã¼´F2£¨1£¬0£©£¬
µ±l2ÓëxÖáÖØºÏʱ£¬l1¡ÍxÖᣬPµã¼´F1£¨-1£¬0£©£¬
µ±l1£¬l2²»ÓëxÖáÖØºÏʱ£¬ÉèP£¨x0£¬y0£©£¨x0¡Ù¡À1£¬y0¡Ù0£©£¬
Éèl1£¬l2бÂÊ·Ö±ðΪm£¬n£¨m¡Ùn£¬m¡Ù0£¬n¡Ù0£©£¬
Ôò£ºl1£ºy=m£¨x+1£©£¬¢Ù£¬l2£ºy=n£¨x-1£©£¬¢Ú£¬
ÓÖÍÖÔ²E£º$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬¢Û
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©
ÓÉ¢Ù¢ÛÁªÁ¢µÃ£¨3+4m2£©x2+8m2x+4m2-12=0£¬
${x_1}+{x_2}=\frac{{-8{m^2}}}{{3+4{m^2}}}£¬{x_1}{x_2}=\frac{{4{m^2}-12}}{{3+4{m^2}}}$£¬¢Ü¡­£¨6·Ö£©
ÓÉ ¢Ú¢ÛÁªÁ¢µÃ£¨3+4n2£©x2-8n2x+4n2-12=0£¬
${x_1}+{x_2}=\frac{{8{n^2}}}{{3+4{n^2}}}£¬{x_1}{x_2}=\frac{{4{n^2}-12}}{{3+4{n^2}}}$£¬¢Ý¡­£¨7·Ö£©
ÓÉk1+k2=k3+k4£¬µÃ$\frac{y_1}{x_1}+\frac{y_2}{x_2}=\frac{y_3}{x_3}+\frac{y_4}{x_4}$£¬
ÓÖ£ºy1=m£¨x1+1£©£¬y2=m£¨x2+1£©£¬y3=n£¨x3-1£©£¬y4=n£¨x4-1£©£¬
´úÈëÉÏʽ£¬µÃ£º$m£¨{2+\frac{{{x_1}+{x_2}}}{{{x_1}{x_2}}}}£©=n£¨{2-\frac{{{x_3}+{x_4}}}{{{x_3}{x_4}}}}£©$£¬¡­£¨8·Ö£©
½«¢Ü¢Ý´úÈ뻯¼òµÃ£¨mn+3£©£¨m-n£©=0£¬¡ßm¡Ùn£¬¡àmn=-3£¬¡­£¨9·Ö£©
¼´£º$\frac{y_0}{{{x_0}+1}}•\frac{y_0}{{{x_0}-1}}=-3£¨{x_0}¡Ù¡À1£©$£¬»¯¼òµÃ£º${x_0}^2+\frac{{{y_0}^2}}{3}=1£¨{{x_0}¡Ù¡À1}£©$¡­£¨10·Ö£©
ÓÉP£¨¡À1£¬0£©Âú×ãÉÏʽ£¬ËùÒÔPµã¹ì¼£·½³ÌΪ£º${x^2}+\frac{y^2}{3}=1$¡­£¨11·Ö£©Ê¹µÃ|PM|+|PN|Ϊ¶¨Öµ
¹Ê´æÔÚ¶¨µãM£¨0£¬-$\sqrt{2}$£©¡¢N£¨0£¬$\sqrt{2}$£©ÎªÍÖÔ²½¹µã$£¨{0£¬¡À\sqrt{2}}£©$£¬Ê¹µÃ|PM|+|PN|=2$\sqrt{3}$Ϊ¶¨Öµ¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄµãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖÊ¡¢Ö±Ïß·½³Ì¡¢Î¤´ï¶¨ÀíµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®É躯Êýf£¨x£©=ax2-£¨2a-1£©x-lnx£¬ÆäÖÐa¡ÊR£®
£¨¢ñ£©µ±a£¾0ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©µ±a£¼0ʱ£¬Çóº¯Êýf£¨x£©ÔÚÇø¼ä[$\frac{1}{2}$£¬1]ÉϵÄ×îСֵ£»
£¨¢ó£©¼Çº¯Êýy=f£¨x£©µÄͼÏóΪÇúÏßC£¬ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÇúÏßCÉϲ»Í¬µÄÁ½µã£¬µãMΪÏß¶ÎABµÄÖе㣬¹ýµãM×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚµãN£¬ÊÔÅжÏÇúÏßCÔÚN´¦µÄÇÐÏßÊÇ·ñƽÐÐÓÚÖ±ÏßAB£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªf£¨x£©=$\frac{x+1}{{e}^{x}}$£®
£¨1£©Çóº¯Êýy=f£¨x£©×îÖµ£»
£¨2£©Èôf£¨x1£©=f£¨x2£©£¨x1¡Ùx2£©£¬ÇóÖ¤£ºx1+x2£¾O£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨Ò壺Èôº¯Êýy=f£¨x£©¶Ô¶¨ÒåÓòÄÚµÄÈÎÒâx£¬¶¼ÓÐf£¨m+x£©=f£¨m-x£©ºã³ÉÁ¢£¬Ôò³Æº¯Êýy=f£¨x£©µÄͼÏóµÄÖ±Ïßx=m¶Ô³Æ£¬Èôº¯Êýf£¨x£©=cx3+ax2+bx+1¹ØÓÚÖ±Ïßx=$\frac{1}{2}$¶Ô³Æ£¬ÇÒa£¾4£¨${\sqrt{e}$+1£©£¬Ôòº¯Êýg£¨x£©=ex+f£¨x£©ÔÚÏÂÁÐÇø¼äÄÚ´æÔÚÁãµãµÄÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬-$\frac{1}{2}}$£©B£®£¨-$\frac{1}{2}$£¬0£©C£®£¨$\frac{1}{2}$£¬1£©D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®º¯Êýy=log0.5£¨x2-4£©+$\frac{2}{x-5}$µÄ¶¨ÒåÓòÊÇ{x|x£¼-2»òx£¾2ÇÒx¡Ù5}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÔËËã¡ð°´ÏÂÃæµÄ·½Ê½¶¨Ò壺a¡ðb=2a-ab£¬ÈôÕûÊýx£¬yʹ£¨2¡ðx£©¡ðy=400³ÉÁ¢£¬ÔòÔÚËùÓÐÂú×ãÌõ¼þµÄÕûÊý¶Ô£¨x£¬y£©ÖУ¬x+yµÄ×î´óֵΪ205£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑ֪ȫ¼¯U={2£¬3£¬5£¬7£¬11£¬13£¬17£¬19}£¬M¡¢NΪUµÄÁ½¸ö×Ó¼¯£¬ÇÒÂú×ãM¡É£¨∁UN£©={3£¬5}£¬£¨∁U M}¡ÉN={7£¬19}£¬£¨∁U M£©¡É£¨∁UN£©={2£¬17}£¬Ç󼯺ÏM¡¢N£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÉèÈ«¼¯U=R£¬¼¯ºÏA={x|-1¡Üx£¼1}£¬B={x|0£¼x¡Ü2}£®
£¨1£©Çó£¨∁U A£©¡ÉB£»
£¨2£©Çó∁U£¨A¡ÉB£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®µÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èôa3=16£¬S20=20£¬ÔòS10=110£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸