·ÖÎö £¨1£©µ±l1ÓëxÖáÖØºÏʱ£¬CD¡ÍxÖᣬÓÉ´ËÁгö·½³Ì×éÇó³öa£¬b£¬´Ó¶øÄÜÇó³öÍÖÔ²EµÄ·½³Ì£®
£¨2£©µ±l1ÓëxÖáÖØºÏʱ£¬l2¡ÍxÖᣬPµã¼´F2£¨1£¬0£©£¬µ±l2ÓëxÖáÖØºÏʱ£¬l1¡ÍxÖᣬPµã¼´F1£¨-1£¬0£©£¬µ±l1£¬l2²»ÓëxÖáÖØºÏʱ£¬ÉèP£¨x0£¬y0£©£¨x0¡Ù¡À1£¬y0¡Ù0£©£¬Éèl1£ºy=m£¨x+1£©£¬l2£ºy=n£¨x-1£©£¬ÍÖÔ²E£º$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬·Ö±ð½«Ö±Ïßl1£¬l2ÓëÍÖÔ²ÁªÁ¢£¬ÔÙÀûÓÃΤ´ï¶¨Àí¡¢Ö±Ïß·½³Ì£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ö´æÔÚ¶¨µãM¡¢NΪÍÖÔ²½¹µã$£¨{0£¬¡À\sqrt{2}}£©$£¬Ê¹µÃ|PM|+|PN|Ϊ¶¨ÖµÎª¶¨Öµ£®
½â´ð ½â£º£¨¢ñ£©µ±l1ÓëxÖáÖØºÏʱ£¬k1=k2=0£¬
¡àk3+k4=0£¬¡àCD¡ÍxÖᣬ
|AB|=2a=4£¬|CD|=$\frac{2{b}^{2}}{a}=3$£¬
¡à$\left\{\begin{array}{l}{2a=4}\\{\frac{2{b}^{2}}{a}=3}\end{array}\right.$£¬½âµÃa=2£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®¡£¨5·Ö£©
£¨¢ò£©µ±l1ÓëxÖáÖØºÏʱ£¬l2¡ÍxÖᣬPµã¼´F2£¨1£¬0£©£¬
µ±l2ÓëxÖáÖØºÏʱ£¬l1¡ÍxÖᣬPµã¼´F1£¨-1£¬0£©£¬
µ±l1£¬l2²»ÓëxÖáÖØºÏʱ£¬ÉèP£¨x0£¬y0£©£¨x0¡Ù¡À1£¬y0¡Ù0£©£¬
Éèl1£¬l2бÂÊ·Ö±ðΪm£¬n£¨m¡Ùn£¬m¡Ù0£¬n¡Ù0£©£¬
Ôò£ºl1£ºy=m£¨x+1£©£¬¢Ù£¬l2£ºy=n£¨x-1£©£¬¢Ú£¬
ÓÖÍÖÔ²E£º$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬¢Û
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©
ÓÉ¢Ù¢ÛÁªÁ¢µÃ£¨3+4m2£©x2+8m2x+4m2-12=0£¬
${x_1}+{x_2}=\frac{{-8{m^2}}}{{3+4{m^2}}}£¬{x_1}{x_2}=\frac{{4{m^2}-12}}{{3+4{m^2}}}$£¬¢Ü¡£¨6·Ö£©
ÓÉ ¢Ú¢ÛÁªÁ¢µÃ£¨3+4n2£©x2-8n2x+4n2-12=0£¬
${x_1}+{x_2}=\frac{{8{n^2}}}{{3+4{n^2}}}£¬{x_1}{x_2}=\frac{{4{n^2}-12}}{{3+4{n^2}}}$£¬¢Ý¡£¨7·Ö£©
ÓÉk1+k2=k3+k4£¬µÃ$\frac{y_1}{x_1}+\frac{y_2}{x_2}=\frac{y_3}{x_3}+\frac{y_4}{x_4}$£¬
ÓÖ£ºy1=m£¨x1+1£©£¬y2=m£¨x2+1£©£¬y3=n£¨x3-1£©£¬y4=n£¨x4-1£©£¬
´úÈëÉÏʽ£¬µÃ£º$m£¨{2+\frac{{{x_1}+{x_2}}}{{{x_1}{x_2}}}}£©=n£¨{2-\frac{{{x_3}+{x_4}}}{{{x_3}{x_4}}}}£©$£¬¡£¨8·Ö£©
½«¢Ü¢Ý´úÈ뻯¼òµÃ£¨mn+3£©£¨m-n£©=0£¬¡ßm¡Ùn£¬¡àmn=-3£¬¡£¨9·Ö£©
¼´£º$\frac{y_0}{{{x_0}+1}}•\frac{y_0}{{{x_0}-1}}=-3£¨{x_0}¡Ù¡À1£©$£¬»¯¼òµÃ£º${x_0}^2+\frac{{{y_0}^2}}{3}=1£¨{{x_0}¡Ù¡À1}£©$¡£¨10·Ö£©
ÓÉP£¨¡À1£¬0£©Âú×ãÉÏʽ£¬ËùÒÔPµã¹ì¼£·½³ÌΪ£º${x^2}+\frac{y^2}{3}=1$¡£¨11·Ö£©Ê¹µÃ|PM|+|PN|Ϊ¶¨Öµ
¹Ê´æÔÚ¶¨µãM£¨0£¬-$\sqrt{2}$£©¡¢N£¨0£¬$\sqrt{2}$£©ÎªÍÖÔ²½¹µã$£¨{0£¬¡À\sqrt{2}}£©$£¬Ê¹µÃ|PM|+|PN|=2$\sqrt{3}$Ϊ¶¨Öµ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄµãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖÊ¡¢Ö±Ïß·½³Ì¡¢Î¤´ï¶¨ÀíµÄºÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-1£¬-$\frac{1}{2}}$£© | B£® | £¨-$\frac{1}{2}$£¬0£© | C£® | £¨$\frac{1}{2}$£¬1£© | D£® | £¨1£¬2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com