精英家教网 > 高中数学 > 题目详情
6.已知全集U={2,3,5,7,11,13,17,19},M、N为U的两个子集,且满足M∩(∁UN)={3,5},(∁U M}∩N={7,19},(∁U M)∩(∁UN)={2,17},求集合M、N.

分析 根据题意,利用交、并、补集的定义确定出M与N即可.

解答 解:∵全集U={2,3,5,7,11,13,17,19},M、N为U的两个子集,且满足M∩(∁UN)={3,5},(∁U M}∩N={7,19},(∁U M)∩(∁UN)={2,17},
∴M={3,5,11,13},N={7,11,13,19}.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.证明:任意五个连续的整数的平方和不是完全平方数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ax2+b(lnx-x),已知曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直.
(1)求a的值;
(2)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,分别过椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)左右焦点F1,F2的两条不同动直线l1,l2相交于P点,l1,l2与椭圆E分别交于A,B与C,D不同四点,直线OA,OB,OC,OD的斜率k1,k2,k3,k4满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=4,|CD|=3.
(1)求椭圆E的方程;
(2)是否存在定点M,N,使得|PM|+|PN|为定值,若存在,求出M,N点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a,b∈R,且对一切x≤0,不等式(ax+2)(x2+2b)≤0恒成立,则a2-b的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$,则$\overrightarrow{MC}$•$\overrightarrow{MD}$的值为(  )
A.-$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{2}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a2-a+2∈{0,2,4,2-a},则实数a=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x2-4x,x∈[t,t+2],f(x)的最大值为M(t)与最小值为m(t).
(1)求M(t)与m(t);
(2)当t∈[-1,1]时,求T=M(t)-m(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知一次函数f(x)=ax+b,g(x)=cx+d的图象如图所示
(1)解关于x的方程f(x)=0及g(x)=0
(2)解关于x的不等式f(x)>0及g(x)<0
(3)解关于x的不等式f(x)>g(x)

查看答案和解析>>

同步练习册答案