精英家教网 > 高中数学 > 题目详情
16.证明:任意五个连续的整数的平方和不是完全平方数.

分析 设五个连续的整数分别为n-2,n-1,n,n+1,n+2,得到(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=5n2+10,继而判断即可.

解答 证明:设五个连续的整数分别为n-2,n-1,n,n+1,n+2,
则(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=5n2+10,
∵5n2+10不是一个完全平方数
∴任意五个连续的整数的平方和不是完全平方数.

点评 本题考查了完全平方公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知A(2,3),B(-1,5),且$\overrightarrow{AC}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AD}$=3$\overrightarrow{AB}$,则$\overrightarrow{CD}$的坐标为(-8,$\frac{16}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知椭圆:$\frac{{x}^{2}}{9}$+y2=1,过左焦点F作倾斜角为$\frac{π}{6}$的直线交椭圆A、B两点,求弦AB的长;
(2)已知椭圆4x2+y2=1及直线y=x+m,若直线被椭圆截得的弦长为$\frac{2\sqrt{10}}{5}$,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ax2-(2a-1)x-lnx,其中a∈R.
(Ⅰ)当a>0时,求函数f(x)的单调递增区间;
(Ⅱ)当a<0时,求函数f(x)在区间[$\frac{1}{2}$,1]上的最小值;
(Ⅲ)记函数y=f(x)的图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N,试判断曲线C在N处的切线是否平行于直线AB?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=x2(x-2)2-a|x-1|+a有4个零点,则a的取值范围为{-$\frac{32}{27}$}∪(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=aex-x-1,a∈R.
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;
(Ⅲ)求证:当x∈(0,+∞)时,ln$\frac{{e}^{x}-1}{x}$>$\frac{x}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一书架有五层,从下到上依次称为第1层,第2层,…,第5层,今把15册图书分放到书架的各层上,有些层上可以不放,证明:无论怎样放法,书架每层上的图书册数,以及相邻两层上的图书册数之和,这些数中至少有两个是相等的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{x+1}{{e}^{x}}$.
(1)求函数y=f(x)最值;
(2)若f(x1)=f(x2)(x1≠x2),求证:x1+x2>O.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知全集U={2,3,5,7,11,13,17,19},M、N为U的两个子集,且满足M∩(∁UN)={3,5},(∁U M}∩N={7,19},(∁U M)∩(∁UN)={2,17},求集合M、N.

查看答案和解析>>

同步练习册答案