分析 由条件利用正弦函数的周期性求得ω的值,再根据正弦函数的最值求得a、b的值,可得函数的解析式.
解答 解:∵函数f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b(x∈R,a>0,ω>0)的最小正周期为π,
∴$\frac{2π}{2ω}$=π,∴ω=1.
再根据函数f(x)的最大值是$\frac{7}{4}$,最小值是$\frac{3}{4}$,
可得a+$\frac{a}{2}$+b=$\frac{7}{4}$,-a+$\frac{a}{2}$+b=$\frac{3}{4}$,求得a=$\frac{1}{2}$,b=1,
∴f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$,
故答案为:f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$.
点评 本题主要考查正弦函数的周期性,正弦函数的最值,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | -2016 | C. | 2015 | D. | -2015 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 型号A | 型号B | 型号C | |
| 高配性 | 10 | 20 | z |
| 低配型 | 30 | 50 | 60 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com