精英家教网 > 高中数学 > 题目详情
3.已知:x,y,z∈R+且$\frac{x}{2+x}$+$\frac{y}{2+y}$+$\frac{z}{2+z}$=1,求证:$\frac{{x}^{2}}{2+x}$+$\frac{{y}^{2}}{2+y}$+$\frac{{z}^{2}}{2+z}$≥1.

分析 由条件可得$\frac{1}{x+2}$+$\frac{1}{y+2}$+$\frac{1}{z+2}$=1,即有$\frac{{x}^{2}}{2+x}$+$\frac{{y}^{2}}{2+y}$+$\frac{{z}^{2}}{2+z}$=($\frac{{x}^{2}}{2+x}$+$\frac{{y}^{2}}{2+y}$+$\frac{{z}^{2}}{2+z}$)($\frac{1}{x+2}$+$\frac{1}{y+2}$+$\frac{1}{z+2}$),运用柯西不等式即可得证.

解答 证明:$\frac{x}{2+x}$+$\frac{y}{2+y}$+$\frac{z}{2+z}$=1,即为:
$\frac{x+2-2}{x+2}$+$\frac{y+2-2}{y+2}$+$\frac{z+2-2}{z+2}$=1,(x,y,z>0)
可得$\frac{1}{x+2}$+$\frac{1}{y+2}$+$\frac{1}{z+2}$=1,
则$\frac{{x}^{2}}{2+x}$+$\frac{{y}^{2}}{2+y}$+$\frac{{z}^{2}}{2+z}$=($\frac{{x}^{2}}{2+x}$+$\frac{{y}^{2}}{2+y}$+$\frac{{z}^{2}}{2+z}$)($\frac{1}{x+2}$+$\frac{1}{y+2}$+$\frac{1}{z+2}$)
≥($\frac{x}{\sqrt{2+x}}$•$\frac{1}{\sqrt{2+x}}$+$\frac{y}{\sqrt{2+y}}$•$\frac{1}{\sqrt{2+y}}$+$\frac{z}{\sqrt{2+z}}$•$\frac{1}{\sqrt{2+z}}$)2
=($\frac{x}{2+x}$+$\frac{y}{2+y}$+$\frac{z}{2+z}$)2=1.
则原不等式成立.

点评 本题考查不等式的证明,注意运用柯西不等式,考查推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.参数方程$\left\{\begin{array}{l}{x=5}\\{y=sinθ}\end{array}\right.$(θ为参数)表示的曲线是(  )
A.一条直线B.两条直线C.一条射线D.一条线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某著名歌星在某地举办一次歌友会,有1000人参加,每人一张门票,每张100元.在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个实数x,y(x,y∈[0,4]),若满足y≥$\frac{8}{5}x$,电脑显示“中奖”,则抽奖者再次获得特等奖奖金;否则电脑显示“谢谢”,则不获得特等奖奖金.
(Ⅰ)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;
(Ⅱ)设特等奖奖金为a元,小李是此次活动的顾客,求小李参加此次活动获益的期望;若该歌友会组织者在此次活动中获益的期望值是至少获得70000元,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c,d都是实数,且a2+b2=1,c2+d2=4,
求证:|ac+bd|≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.甲、乙两人各掷一枚骰子,试解答下列各问:
(1)列举所有不同的基本事件;
(2)求事件“向上的点数之差为3”的概率;
(3)求事件“向上的点数之积为6”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a1=$\frac{1}{2},{a_{n+1}}=\frac{a_n}{{1+2{a_n}}}$(n∈N*
(1)求a2,a3,a4并由此猜想数列{an}的通项公式an的表达式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某研究小组在电脑上进行人工降雨模拟试验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表
方式实施地点大雨中雨小雨模拟实验总次数
A4次6次2次12次
B3次6次3次12次
C2次2次8次12次
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟试验的统计数据
(I)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某外语学校英语班有A1、A2两位同学,日语班有B1、B2、B3三位同学,共5人报名奥运会志愿者,现从中选出懂英语、日语的志愿者各1人,组成一个小组.
(1)写出所有可能的结果;
(2)求A2被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个盒子里装有标号为1,2,3,4,5,6,7,8,9的9张标签,随机地选取7张标签,则取出的7张标签的标号的平均数是5的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{2}{3}$D.$\frac{8}{9}$

查看答案和解析>>

同步练习册答案