精英家教网 > 高中数学 > 题目详情
18.甲、乙两人各掷一枚骰子,试解答下列各问:
(1)列举所有不同的基本事件;
(2)求事件“向上的点数之差为3”的概率;
(3)求事件“向上的点数之积为6”的概率.

分析 (1)甲、乙两人各掷一枚骰子,共有36个不同的基本事件,利用列举法能求出所有结果.
(2)利用列举法求出组成事件“向上的点数之差为3”的基本事件有6种,由此能求出事件“向上的点数之差为3”的概率.
(3)利用列举法求出组成事件“向上的点数之积为6”的基本事件有4种,由此能求出向上的点数之积为6的概率.

解答 解:(1)甲、乙两人各掷一枚骰子,共有36个不同的基本事件,
列举如下:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),
(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),
(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),
(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),
(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).
(2)组成事件“向上的点数之差为3”的基本事件有:
(1,4),(2,5),(3,6).(6,3),(5,2),(4,1),共6种.
∴事件“向上的点数之差为3”的概率p1=$\frac{6}{36}$=$\frac{1}{6}$.
(3)组成事件“向上的点数之积为6”的基本事件有:
(1,6),(2,3),(3,2),(6,1),共4种,
∴向上的点数之积为6的概率为$\frac{4}{36}=\frac{1}{9}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图是某几何体的三视图,则该几何体的其全面积为72,其外接球的半径为$\frac{{5\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系中,曲线C位于第一、三象限.若曲线C经过点A(2,4),且曲线C上的点到y轴的距离与其到x轴的距离的比是常数,则曲线C的方程是(  )
A.2x+y=0B.2x-y=0C.2x+y=0(x≠0)D.2x-y=0(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.每逢节假日,在微信好友群发红包逐渐成为一种时尚,还能增进彼此的感情.2016年春节期间,小鲁在自己的微信好友群中,向在线的甲、乙、丙、丁四位好友随机发放红包,发放的规则为:每次发放一个,每个人抢到的概率相同.
(1)若小鲁随机发放了3个红包,求甲至少抢到一个红包的概率;
(2)若丁因有事暂时离线一段时间,而小鲁在这段时间内共发放了3个红包,其中2个红包中各有10元,一个红包中有5元,记这段时间内乙所得红包的总钱数为X元,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两个正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗出现的点数(面朝下的数字),y表示第2颗出现的点数(面朝下的数字).
(1)求事件“点数之和不小于4”的概率;
(2)求事件“点数之积能被2或3整除”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知:x,y,z∈R+且$\frac{x}{2+x}$+$\frac{y}{2+y}$+$\frac{z}{2+z}$=1,求证:$\frac{{x}^{2}}{2+x}$+$\frac{{y}^{2}}{2+y}$+$\frac{{z}^{2}}{2+z}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校开设A、B、C、D、E五门选修课,要求每位同学彼此独立地从中选修3门课程.某甲同学必选A课程,不选B课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(1)求甲同学选中C课程且乙、丙同学未选C课程的概率;
(2)用X表示甲、乙、丙选中C课程的人数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量X的分布列如表(其中a为常数):
X01234
P0.10.20.40.2a
则下列计算结果错误的是(  )
A.a=0.1B.P(x≥2)=0.7C.P(x≥3)=0.4D.P(x<2)=0.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:
所用的时间(天数)10111213
通过公路l的频数20402020
通过公路2的频数10404010
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).
(I)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(Ⅱ)若通过公路l、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到;每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车A,B按(I)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.

查看答案和解析>>

同步练习册答案