精英家教网 > 高中数学 > 题目详情
15.某研究小组在电脑上进行人工降雨模拟试验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表
方式实施地点大雨中雨小雨模拟实验总次数
A4次6次2次12次
B3次6次3次12次
C2次2次8次12次
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟试验的统计数据
(I)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

分析 (Ⅰ)由人工降雨模拟试验的统计数据,用A,B,C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,求出大雨、中雨、小雨的概率分布表,由此利用相互独立事件概率计算公式能求出甲、乙、丙三地都恰为中雨的概率.
(Ⅱ)设甲、乙、丙三地达到理想状态的概率分别为p1,p2,p3,则${p}_{1}=p({A}_{2})=\frac{1}{2}$,p2=p(B1)=$\frac{1}{4}$,p3=P(C2)+P(C3)=$\frac{5}{6}$,ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量ξ的分布列和数学期望.

解答 解:(Ⅰ)由人工降雨模拟试验的统计数据,用A,B,C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,
得到大雨、中雨、小雨的概率如下表:

 方式 实施地点 大雨 中雨 小雨
 A 甲 P(A1)=$\frac{1}{3}$ P(A2)=$\frac{1}{2}$ P(A3)=$\frac{1}{6}$
 B 乙 P(B1)=$\frac{1}{4}$ P(B2)=$\frac{1}{2}$ P(B3)=$\frac{1}{4}$
 C 丙 P(C1)=$\frac{1}{6}$ P(C2)=$\frac{1}{6}$ P(C3)=$\frac{2}{3}$
记“甲、乙、丙三地都恰为中雨”为事件E,
则P(E)=P(A2)P(B2)P(C2)=$\frac{1}{2}×\frac{1}{2}×\frac{1}{6}$=$\frac{1}{24}$.
(Ⅱ)设甲、乙、丙三地达到理想状态的概率分别为p1,p2,p3
则${p}_{1}=p({A}_{2})=\frac{1}{2}$,p2=p(B1)=$\frac{1}{4}$,p3=P(C2)+P(C3)=$\frac{5}{6}$,
ξ的可能取值为0,1,2,3,
P(ξ=0)=(1-p1)(1-p2)(1-p3)=$\frac{1}{2}×\frac{3}{4}×\frac{1}{6}$=$\frac{3}{48}$,
P(ξ=1)=p1(1-p2)(1-p3)+(1-p1)p2(1-p3)+(1-p1)(1-p2)p3
=$\frac{1}{2}×\frac{3}{4}×\frac{1}{6}$+$\frac{1}{2}×\frac{1}{4}×\frac{1}{6}$+$\frac{1}{2}×\frac{3}{4}×\frac{5}{6}$=$\frac{19}{48}$,
P(ξ=2)=p1p2(1-p3)+(1-p1)p2p3+p1(1-p2)p3
=$\frac{1}{2}×\frac{1}{4}×\frac{1}{6}+\frac{1}{2}×\frac{1}{4}×\frac{5}{6}$+$\frac{1}{2}×\frac{3}{4}×\frac{5}{6}$=$\frac{21}{48}$,
P(ξ=3)=p1p2p3=$\frac{1}{2}×\frac{1}{4}×\frac{5}{6}$=$\frac{5}{48}$,
∴随机变量ξ的分布列为:
 ξ 0 1 2 3
 P $\frac{3}{48}$ $\frac{19}{48}$ $\frac{21}{48}$ $\frac{5}{48}$
Eξ=$\frac{3}{48}×0+\frac{18}{49}×1+\frac{21}{48}×2+\frac{5}{48}×3$=$\frac{19}{12}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知A、B、C、D、E五所高校举行自主招生考试,某同学决定按A、B、C、D、E的顺序参加考试.假设该同学参加每所高校的考试获得通过的概率为$\frac{1}{3}$.
(1)如果该同学五所高校的考试都参加,求在恰有两所通过的条件下,不是连续两所通过的概率;
(2)如果该同学一旦通过某所高校的考试,就不再参加后面高校的考试,假设参加每所高校考试所需的费用均为162元,试求该同学参加考试所需费用X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.每逢节假日,在微信好友群发红包逐渐成为一种时尚,还能增进彼此的感情.2016年春节期间,小鲁在自己的微信好友群中,向在线的甲、乙、丙、丁四位好友随机发放红包,发放的规则为:每次发放一个,每个人抢到的概率相同.
(1)若小鲁随机发放了3个红包,求甲至少抢到一个红包的概率;
(2)若丁因有事暂时离线一段时间,而小鲁在这段时间内共发放了3个红包,其中2个红包中各有10元,一个红包中有5元,记这段时间内乙所得红包的总钱数为X元,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知:x,y,z∈R+且$\frac{x}{2+x}$+$\frac{y}{2+y}$+$\frac{z}{2+z}$=1,求证:$\frac{{x}^{2}}{2+x}$+$\frac{{y}^{2}}{2+y}$+$\frac{{z}^{2}}{2+z}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校开设A、B、C、D、E五门选修课,要求每位同学彼此独立地从中选修3门课程.某甲同学必选A课程,不选B课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(1)求甲同学选中C课程且乙、丙同学未选C课程的概率;
(2)用X表示甲、乙、丙选中C课程的人数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知随机变量ξ的分布列为P(ξ=K)=$\frac{1}{{2}^{K}}$,k=1,2,…,则P(2<ξ≤4)等于(  )
A.$\frac{3}{16}$B.$\frac{1}{4}$C.$\frac{1}{16}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量X的分布列如表(其中a为常数):
X01234
P0.10.20.40.2a
则下列计算结果错误的是(  )
A.a=0.1B.P(x≥2)=0.7C.P(x≥3)=0.4D.P(x<2)=0.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求过点M(3,2)且与圆x2+y2+4x-2y+4=0相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a+b=1,(a+$\frac{1}{2}$)(b+$\frac{1}{2}$)≥0,求证:$\sqrt{a+\frac{1}{2}}$+$\sqrt{b+\frac{1}{2}}$≤2.

查看答案和解析>>

同步练习册答案