分析 由题意画出图形,可知所求切线的斜率存在,设出直线方程,由圆心到切线的距离等于圆的半径求得斜率,则切线方程可求.
解答
解:由圆x2+y2+4x-2y+4=0,得(x+2)2+(y-1)2=1
∴圆x2+y2+4x-2y+4=0的圆心坐标为(-2,1),半径为1,
作出其图象如图:
设切线的斜率为k,则切线方程为y-2=k(x-3),
即kx-y-3k+2=0.
由$\frac{|-2k-1-3k+2|}{\sqrt{{k}^{2}+1}}=1$,解得${k}_{1}=0,{k}_{2}=\frac{5}{12}$.
∴所求切线方程为y=2和$\frac{5}{12}x-y-3×\frac{5}{12}+2=0$.
即y=2和5x-12y+9=0.
点评 本题考查圆的切线方程的求法,考查数形结合的解题思想方法和数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
| A | 甲 | 4次 | 6次 | 2次 | 12次 |
| B | 乙 | 3次 | 6次 | 3次 | 12次 |
| C | 丙 | 2次 | 2次 | 8次 | 12次 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4x+3y-7=0 | B. | 3x+4y-7=0 | C. | 3x-4y+1=0 | D. | 4x-3y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 类型 | A类 | B类 | C类 |
| 已行驶总里程不超过10万公里的车辆数 | 10 | 40 | 30 |
| 已行驶总里程超过10万公里的车辆数 | 20 | 20 | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com