精英家教网 > 高中数学 > 题目详情
19.已知数列{an}的前n项和Sn满足:Sn=$\frac{{a}_{n}}{2}$+$\frac{1}{{a}_{n}}$-1且an>0,n∈N+
(1)求a1,a2,a3
(2)猜想{an}的通项公式,并用数学归纳法证明.

分析 (1)由数列{an}的递推公式依次求出a1,a2,a3
(2)根据a1,a2,a3值的结构特点猜想{an}的通项公式,再用数学归纳法①验证n=1成立,②假设n=k时命题成立,证明当n=k+1时命题也成立.

解答 解:(1)∵a1=S1=$\frac{{a}_{1}}{2}$+$\frac{1}{{a}_{1}}$-1,
∴a1=-1±$\sqrt{3}$.
又∵an>0,
∴a1=$\sqrt{3}$-1.
S2=a1+a2=$\frac{{a}_{2}}{2}$+$\frac{1}{{a}_{2}}$-1,
∴a2=$\sqrt{5}$-$\sqrt{3}$.
S3=a1+a2+a3=$\frac{{a}_{3}}{2}$+$\frac{1}{{a}_{3}}$-1,
∴a3=$\sqrt{7}$-$\sqrt{5}$.
(2)由(1)猜想an=$\sqrt{2n+1}$-$\sqrt{2n-1}$,n∈N+.
下面用数学归纳法加以证明:
①当n=1时,由(1)知a1=$\sqrt{3}$-1成立.
②假设n=k(k∈N+)时,ak=$\sqrt{2k+1}$-$\sqrt{2k-1}$成立.
当n=k+1时,ak+1=Sk+1-Sk=($\frac{{a}_{k+1}}{2}$+$\frac{1}{{a}_{k+1}}$-1)-($\frac{{a}_{k}}{2}$+$\frac{1}{{a}_{k}}$-1)=$\frac{{a}_{k+1}}{2}$+$\frac{1}{{a}_{k+1}}$-$\sqrt{2k+1}$,
∴ak+12+2$\sqrt{2k+1}$ak+1-2=0
∴ak+1=$\sqrt{2(k+1)+1}$-$\sqrt{2(k+1)-1}$,
即当n=k+1时猜想也成立.
综上可知,猜想对一切n∈N+都成立.

点评 本题是中档题,考查数列递推关系式的应用,数学归纳法证明数列问题的方法,考查逻辑推理能力,计算能力.注意在证明n=k+1时用上假设,化为n=k的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系中,曲线C位于第一、三象限.若曲线C经过点A(2,4),且曲线C上的点到y轴的距离与其到x轴的距离的比是常数,则曲线C的方程是(  )
A.2x+y=0B.2x-y=0C.2x+y=0(x≠0)D.2x-y=0(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校开设A、B、C、D、E五门选修课,要求每位同学彼此独立地从中选修3门课程.某甲同学必选A课程,不选B课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(1)求甲同学选中C课程且乙、丙同学未选C课程的概率;
(2)用X表示甲、乙、丙选中C课程的人数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量X的分布列如表(其中a为常数):
X01234
P0.10.20.40.2a
则下列计算结果错误的是(  )
A.a=0.1B.P(x≥2)=0.7C.P(x≥3)=0.4D.P(x<2)=0.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线x+y=1与曲线y=$\sqrt{a-{x}^{2}}$(a>0)恰有一个公共点,则a的取值范围是(  )
A.a=$\frac{1}{2}$B.a>1或a=$\frac{1}{2}$C.$\frac{1}{2}$≤a<1D.$\frac{1}{2}$<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求过点M(3,2)且与圆x2+y2+4x-2y+4=0相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)如果a,b都是正数,且a≠b,求证:$\frac{a}{{\sqrt{b}}}$+$\frac{b}{{\sqrt{a}}}$>$\sqrt{a}$+$\sqrt{b}$
(2)设x>-1,m∈N*,用数学归纳法证明:(1+x)m≥1+mx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:
所用的时间(天数)10111213
通过公路l的频数20402020
通过公路2的频数10404010
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).
(I)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(Ⅱ)若通过公路l、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到;每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车A,B按(I)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,假设每局比赛中,甲胜乙的概率为$\frac{1}{2}$,甲胜丙、乙胜丙的概率都为$\frac{2}{3}$,各局比赛的结果都相互独立,第1局甲当裁判.
(1)求第3局甲当裁判的概率;
(2)记前4局中乙当裁判的次数为X,求X的概率分布与数学期望.

查看答案和解析>>

同步练习册答案