精英家教网 > 高中数学 > 题目详情
14.直线x+y=1与曲线y=$\sqrt{a-{x}^{2}}$(a>0)恰有一个公共点,则a的取值范围是(  )
A.a=$\frac{1}{2}$B.a>1或a=$\frac{1}{2}$C.$\frac{1}{2}$≤a<1D.$\frac{1}{2}$<a<1

分析 将曲线y=$\sqrt{a-{x}^{2}}$(a>0)看成一个半圆,画出直线x+y=1与半圆恰有一个公共点时的情况,求解a的取值范围即可.

解答 解:由曲线y=$\sqrt{a-{x}^{2}}$(a>0),知y≥0,
等式两边同时平方,整理可得x2+y2=a2
即曲线y=$\sqrt{a-{x}^{2}}$(a>0)是以(0,0)点为圆心,以$\sqrt{a}$为半径的半圆(y≥0)
已知直线x+y=1,可在直角坐标系中给出图象(如下图)

由图象可知,当半圆的半径$\sqrt{a}$>1即a>1时或者半圆与直线相切时恰有一个公共交点,
当半圆与直线相切时,圆心(0,0)到直线的距离即为半圆的半径,此时$\sqrt{a}$$\frac{|-1|}{\sqrt{2}}$,即a=$\frac{1}{2}$
所以当直线x+y=1与曲线y=$\sqrt{a-{x}^{2}}$(a>0)恰有一个公共点时,a的取值范围是a=$\frac{1}{2}$或a>1.
故选:B.

点评 对于直线和圆的交点个数问题,采用数形结合的思想来考虑较为直观、简单.是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆Σ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距为4,且经过点$P(2,\frac{5}{3})$.
(Ⅰ)求椭圆Σ的方程;
(Ⅱ)若直线l经过M(0,1),与Σ交于A、B两点,$\overrightarrow{MA}=-\frac{2}{3}\overrightarrow{MB}$,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC;
(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为降低汽车尾气的排放量,某厂生产甲、乙两种不同型号的节排器,分别从甲、乙两种节排器中随机抽取100件进行性能质量评估检测,综合得分情况的概率分布直方图如图所示.
节排器等级及利润率如表所示($\frac{1}{10}$<a<$\frac{1}{6}$).
综合得分k的取值范围 节排器等级 节排器利润率
 k≥85一级品 a
 75≤k<85 二级品 5a2
 70≤k<75 三级品a2
(1)视概率分布直方图中的频率为概率,则
①若从甲型号节排器中按节排器等级用分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;
②若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望Eξ;
(2)从长期来看,投资哪种型号的节排器平均利润率较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点M(1,0),A,B是椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点,且$\overrightarrow{MA}$$•\overrightarrow{MB}$=0,则$\overrightarrow{MA}$•$\overrightarrow{BA}$的取值是(  )
A.[$\frac{2}{3}$,1]B.[1,9]C.[$\frac{2}{3}$,9]D.[$\frac{\sqrt{6}}{3}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和Sn满足:Sn=$\frac{{a}_{n}}{2}$+$\frac{1}{{a}_{n}}$-1且an>0,n∈N+
(1)求a1,a2,a3
(2)猜想{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)写出a的值;
(Ⅱ)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;
(Ⅲ)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c均为正实数,且$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$=1.
(1)证明:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≤$\sqrt{3}$;
(2)求证:$\frac{{a}^{2}}{{b}^{4}}$+$\frac{{b}^{2}}{{c}^{4}}$+$\frac{{c}^{2}}{{a}^{4}}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线Ax+By+1=0.若A,B是从-3,-1,0,2,7这5个数中选取的不同的两个数,则直线的斜率小于0的概率为$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案