精英家教网 > 高中数学 > 题目详情
3.已知a,b,c均为正实数,且$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$=1.
(1)证明:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≤$\sqrt{3}$;
(2)求证:$\frac{{a}^{2}}{{b}^{4}}$+$\frac{{b}^{2}}{{c}^{4}}$+$\frac{{c}^{2}}{{a}^{4}}$≥1.

分析 (1)运用均值不等式,可得$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$≥$\frac{1}{ab}$+$\frac{1}{bc}$+$\frac{1}{ca}$,再由两边平方即可得到证明;
(2)由均值不等式可得$\frac{{a}^{2}}{{b}^{4}}$+$\frac{1}{{a}^{2}}$≥$\frac{2}{{b}^{2}}$,$\frac{{b}^{2}}{{c}^{4}}$+$\frac{1}{{b}^{2}}$≥$\frac{2}{{c}^{2}}$,$\frac{{c}^{2}}{{a}^{4}}$+$\frac{1}{{c}^{2}}$≥$\frac{2}{{a}^{2}}$,相加即可得证.

解答 证明:(1)由a,b,c均为正实数,且$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$=1,
可得$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥$\frac{2}{ab}$,$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$≥$\frac{2}{bc}$,$\frac{1}{{a}^{2}}$+$\frac{1}{{c}^{2}}$≥$\frac{2}{ac}$,
相加可得$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$≥$\frac{1}{ab}$+$\frac{1}{bc}$+$\frac{1}{ca}$,
即有($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)2=$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$+2($\frac{1}{ab}$+$\frac{1}{bc}$+$\frac{1}{ca}$)
≤3($\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$)=3,当且仅当a=b=c=$\sqrt{3}$取得等号;
(2)由a,b,c均为正实数,且$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$=1,
可得$\frac{{a}^{2}}{{b}^{4}}$+$\frac{1}{{a}^{2}}$≥2$\sqrt{\frac{{a}^{2}}{{b}^{4}}•\frac{1}{{a}^{2}}}$=$\frac{2}{{b}^{2}}$,
$\frac{{b}^{2}}{{c}^{4}}$+$\frac{1}{{b}^{2}}$≥$\frac{2}{{c}^{2}}$,$\frac{{c}^{2}}{{a}^{4}}$+$\frac{1}{{c}^{2}}$≥$\frac{2}{{a}^{2}}$,
相加可得$\frac{{a}^{2}}{{b}^{4}}$+$\frac{{b}^{2}}{{c}^{4}}$+$\frac{{c}^{2}}{{a}^{4}}$≥$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$=1,
即有原不等式成立.

点评 本题考查不等式的证明,注意运用均值不等式,考查推理能力和运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两个正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗出现的点数(面朝下的数字),y表示第2颗出现的点数(面朝下的数字).
(1)求事件“点数之和不小于4”的概率;
(2)求事件“点数之积能被2或3整除”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线x+y=1与曲线y=$\sqrt{a-{x}^{2}}$(a>0)恰有一个公共点,则a的取值范围是(  )
A.a=$\frac{1}{2}$B.a>1或a=$\frac{1}{2}$C.$\frac{1}{2}$≤a<1D.$\frac{1}{2}$<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)如果a,b都是正数,且a≠b,求证:$\frac{a}{{\sqrt{b}}}$+$\frac{b}{{\sqrt{a}}}$>$\sqrt{a}$+$\sqrt{b}$
(2)设x>-1,m∈N*,用数学归纳法证明:(1+x)m≥1+mx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用适当的方法证明下列不等式
(1)已知a,b,c是正实数,证明不等式$\frac{a+b}{2}•\frac{b+c}{2}•\frac{c+a}{2}$≥abc;
(2)求证:当a>1时,$\sqrt{a+1}+\sqrt{a-1}<2\sqrt{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:
所用的时间(天数)10111213
通过公路l的频数20402020
通过公路2的频数10404010
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).
(I)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(Ⅱ)若通过公路l、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到;每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车A,B按(I)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.求以点C(2,1)为圆心,且与直线4x-3y=0相切的圆的方程(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设P为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任一点,F1,F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线l:y=kx+m(m≠0)经过点(-1,0),且与椭圆交于P、Q两点,若直线OP,PQ,OQ的斜率依次成等比数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,A(2,0)是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)长轴右端点,点B,C在椭圆C上,BC过椭圆O,$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,|$\overrightarrow{OC}$|=|$\overrightarrow{AC}$|,M,N为椭圆上异于A,B的不同两点,∠MCN的角平分线垂直于x轴.
(Ⅰ)求椭圆方程;
(Ⅱ)问是否存在实数λ,使得$\overrightarrow{MN}$=λ$\overrightarrow{BA}$,若存在,求出λ的最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案