精英家教网 > 高中数学 > 题目详情
15.求以点C(2,1)为圆心,且与直线4x-3y=0相切的圆的方程(x-2)2+(y-1)2=1.

分析 由点到直线距离公式求出圆的半径,然后代入圆的标准方程得答案.

解答 解:∵圆心C(2,1),圆的一条切线方程为4x-3y=0,
∴圆的半径r=$\frac{|4×2-3×1|}{\sqrt{{4}^{2}+(-3)^{2}}}=1$,
∴圆的方程为(x-2)2+(y-1)2=1.
故答案为:(x-2)2+(y-1)2=1.

点评 本题考查圆的切线方程,考查了点到直线距离公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC;
(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)写出a的值;
(Ⅱ)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;
(Ⅲ)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c均为正实数,且$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$=1.
(1)证明:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≤$\sqrt{3}$;
(2)求证:$\frac{{a}^{2}}{{b}^{4}}$+$\frac{{b}^{2}}{{c}^{4}}$+$\frac{{c}^{2}}{{a}^{4}}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知⊙O:x2+y2=1,若直线y=$\sqrt{k}$x+2上总存在点P,使得过点P的⊙O的两条切线互相垂直,则实数k的取值范围为(  )
A.k≥1B.k>1C.k≥2D.k>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.环保部门在某社区对年龄在10到55岁的居民随机抽取了2000名进行环保知识测评,测试结果按年龄分组如表:
分组[10,25)[25,40)[40,55]
成绩优秀670ab
成绩一般8060c
已知在全部样本中随机抽取1人,抽到年龄在[25,40)间测试成绩优秀的概率是0.32.
(I)现用分层抽样的方法在全部样本中抽取200人,问年龄在[40,55]内共抽取多少人?
(Ⅱ)当社区测试总优秀率不小于90%,可获评爱护环境先进单位奖,已知b≥485,c≥55,问在此前提下该社区获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+1|+|x-2|,不等式f(x)≥t对?x∈R恒成立.
(1)求t的取值范围;
(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:$\frac{2}{{\frac{1}{a}+\frac{1}{b}}}$≤$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线Ax+By+1=0.若A,B是从-3,-1,0,2,7这5个数中选取的不同的两个数,则直线的斜率小于0的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击成绩互不影响.从射击成绩中分别随机抽查了20个数据.
甲  8 8 8 8 9 9 9 9  9 9 9 9  9  10 10 10 10  10 10 10 
乙  8 8 8 8  8 9 9 9  9 9 9 9  9  10 10 10 10  10 10 10
若将频率视为概率,回答下列间题.
(I)画出甲、乙两运动员射击环数的频率分布条形图;
(Ⅱ)甲、乙两运动员各自射击1次,记事件C:“甲射击的环数高于乙射击的环数”,求C的概率;
(Ⅲ)甲、乙两运动员各自射击1次,ξ表示这2次射击中击中10环的次数,求ξ的分布列及Eξ.

查看答案和解析>>

同步练习册答案