精英家教网 > 高中数学 > 题目详情
5.已知a+b=1,(a+$\frac{1}{2}$)(b+$\frac{1}{2}$)≥0,求证:$\sqrt{a+\frac{1}{2}}$+$\sqrt{b+\frac{1}{2}}$≤2.

分析 运用分析法证明,要证原不等式成立,可通过两边平方,化简整理,再由配方即可得证.

解答 证明:由a+b=1,(a+$\frac{1}{2}$)(b+$\frac{1}{2}$)≥0,
可得a+$\frac{1}{2}$≥0,b+$\frac{1}{2}$≥0,
要证$\sqrt{a+\frac{1}{2}}$+$\sqrt{b+\frac{1}{2}}$≤2,
两边平方即证a+b+1+2$\sqrt{(a+\frac{1}{2})(b+\frac{1}{2})}$≤4,
即为$\sqrt{(a+\frac{1}{2})(b+\frac{1}{2})}$≤1,
再两边平方可得(a+$\frac{1}{2}$)(b+$\frac{1}{2}$)≤1,
展开即为ab+$\frac{1}{2}$(a+b)+$\frac{1}{4}$≤1,代入a+b=1,
可得ab≤$\frac{1}{4}$,即有a(1-a)-$\frac{1}{4}$≤0,
即为-(a-$\frac{1}{2}$)2≤0,显然成立.
则原不等式成立.

点评 本题考查不等式的证明,运用了分析法证明,这是常用方法,本题也可运用柯西不等式:(ac+bd)2≤(a2+b2)(c2+d2),考查推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某研究小组在电脑上进行人工降雨模拟试验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表
方式实施地点大雨中雨小雨模拟实验总次数
A4次6次2次12次
B3次6次3次12次
C2次2次8次12次
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟试验的统计数据
(I)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆.目前我国主流纯电动汽车按续航里程数R(单位:公里)分为3类,即A类:80≤R<150,B类:150≤R<250,C类:R≥250.该公司对这140辆车的行驶总里程进行统计,结果如表:
类型A类B类C类
已行驶总里程不超过10万公里的车辆数104030
已行驶总里程超过10万公里的车辆数202020
(Ⅰ)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;
(Ⅱ)公司为了了解这些车的工作状况,决定抽取14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从C类车中抽取了n辆车.
(ⅰ)求n的值;
(ⅱ)如果从这n辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个盒子里装有标号为1,2,3,4,5,6,7,8,9的9张标签,随机地选取7张标签,则取出的7张标签的标号的平均数是5的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{2}{3}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.环保部门在某社区对年龄在10到55岁的居民随机抽取了2000名进行环保知识测评,测试结果按年龄分组如表:
分组[10,25)[25,40)[40,55]
成绩优秀670ab
成绩一般8060c
已知在全部样本中随机抽取1人,抽到年龄在[25,40)间测试成绩优秀的概率是0.32.
(I)现用分层抽样的方法在全部样本中抽取200人,问年龄在[40,55]内共抽取多少人?
(Ⅱ)当社区测试总优秀率不小于90%,可获评爱护环境先进单位奖,已知b≥485,c≥55,问在此前提下该社区获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A(0,1),B(-$\sqrt{3}$,0),C(-$\sqrt{3}$,2),则△ABC外接圆的圆心到直线y=-$\sqrt{3}$x的距离为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某便携式灯具厂的检验室,要检查该厂生产的某一批次产品在使用时的安全性.检查人员从中随机抽取5件,通过对其加以不同的电压(单位:伏特)测得相应电流(单位:安培),数据见下表:
产品编号 ① ② ③ ④ ⑤
电压(x)1015202530
电流(y)0.60.81.41.21.5
(1)试估计如对该批次某件产品加以110伏电压,产生的电流是多少?
(2)依据其行业标准,该类产品电阻在[18,22]内为合格品.以上述抽样中得到的频率为合格品概率,再从该批次产品中随机抽取5件,记随机变量X表示其中合格品个数,求随机变量X的分布列、期望和方差.
(附:回归方程:$\hat y=bx+a$,其中:$b=\frac{{\sum_{i=1}^n{({x_i}{y_i})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$
参考数据:$\overline{x}=20$,$\overline{y}$=1.1,$\sum_{i=1}^5{{x_i}{y_i}}$=121,$\sum_{i=1}^5{x_i^2}$=2250)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将一颗骰子连续抛掷2次,向上的点数分别为m,n,则点P(m,n)在直线y=$\frac{1}{2}$x下方的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱柱ABCD-A1B1C1D1,底面ABCD是边长为2的菱形,∠BAD=60°,AA1=4,且A1C⊥底面ABCD.
(I)证明:平面ACC1A1⊥平面DBB1D1
(Ⅱ)求直线A1C与平面DBB1D1所成角.

查看答案和解析>>

同步练习册答案