精英家教网 > 高中数学 > 题目详情
精英家教网如图,在多面体ABCDE中,AE⊥面ABC,BD∥AE,且AC=AB=BC=BD=2,AE=1,F为CD中点.
(1)求证:EF∥平面ABC;(2)求证:EF⊥平面BCD.
分析:(1)取BC中点O,连接OF,可证四边形EAOF是平行四边形,再利用直线与平面平行的判定定理进行证明,即可解决问题;
(2)连接BF,由EF2+BF2=BE2得到BF⊥EF,又EF⊥CD,则线面垂直的判断定理证明.
解答:解::(1)证明:取BC中点O,连接OF
∵F是CD中点,O为CB中点,∴OF∥DB且OF=
1
2
DB,
又BD∥AE且AE=
1
2
BD
∴OF∥AE,OF=AE
∴四边形EAOF是平行四边形
∴OA∥FE
又∵OA?平面ABC,EF?平面ABC
∴EF∥平面ABC.
(2)连接BF,∵AE=1,则AB=BC=AC=BD=2,
于是 CE=ED=
5
CD=2
2

所以 EF=
3
BF=
2
BE=
5

所以BF⊥EF,又EF⊥CD,又BF,CD为两条相交直线
故EF⊥平面BCD
点评:考查空间想象能力、逻辑思维能力、运算求解能力和探究能力,同时考查学生灵活利用图形,借助向量工具解决问题的能力,考查数形结合思想.是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)求证:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求证:AB1∥平面 A1C1C;
(Ⅱ)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)若D是BC的中点,求证:B1D∥平面A1C1C;
(3)若BC=2,求几何体ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•郑州二模)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求证:A1B1⊥平面AA1C; 
(II)求证:AB1∥平面 A1C1C;
(II)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

同步练习册答案