精英家教网 > 高中数学 > 题目详情

【题目】为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况为:5,6,7,8,9,10.把这6名学生的得分看成一个总体.

(1)求该总体的平均数;

(2)用简单随机抽样方法从这6名学生中抽取2,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.

【答案】(1)7.5;(2).

【解析】试题分析:

(1)由题意结合平均数计算公式可得总体平均数为7.5.

(2)由题意可得全部可能的基本结果有15个,而满足题意的结果共有7个,故所求的概率为P(A)=.

试题解析:

(1)总体平均数为×(5+6+7+8+9+10)=7.5.

(2)A表示事件样本平均数与总体平均数之差的绝对值不超过0.5”.

从总体中抽取2个个体,全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),15个基本结果.

事件A包含的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.

∴所求的概率为P(A)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点O(0,0),A(1,2),B(4,5)=+t

:(1)t为何值时Px轴上y轴上在第二象限

(2)四边形OABP能否成为平行四边形若能求出相应的t若不能请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学学习习惯不好,把黑板上老师写的表达式忘了,记不清楚是还是.翻出草稿本发现在用五点作图法列表作图时曾算出过一些数据(如下表).

0

0

3

0

0

1)请你帮助该同学补充完表格中的数据,写出该函数的表达式,并写出该函数的最小正周期;

2)若利用的图象用图象变化法作的图象,其步骤如下:(在空格内填上合适的变换方法)

第一步:的图象向右平移_____得到_____的图象;

第二步:的图象(纵坐标不变)______得到_____的图象;

第三步:的图象(横坐标不变)_____得到的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,为椭圆的一个焦点,离心率,过作两条互相垂直的直线与椭圆交于两点,与椭圆交于两点,且四点在椭圆上逆时针分布.

(1)求椭圆的标准方程;

(2)求四边形面积的最大值与最小值的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知|x|≤2,|y|≤2,P的坐标为(x,y).

(1)求当x,yR,P满足(x-2)2+(y-2)2≤4的概率.

(2)求当x,yZ,P满足(x-2)2+(y-2)2≤4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C:的右准线方程为,右顶点为

求椭圆C的方程;

若M,N是椭圆C上不同于A的两点,点P是线段MN的中点.

如图1,若为等腰直角三角形且直角顶点P在x轴上方,求直线MN的方程;

如图2所示,点Q是线段NA的中点,若的角平分线与x轴垂直,求直线AM的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】()(2017·开封二模)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.

(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率.

(2)检验结束后,甲、乙两名运动员的成绩用茎叶图表示如图:

计算说明哪位运动员的成绩更稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率分别是椭圆的左、右焦点,过的直线相交于A,B两点,的周长为

(1)求椭圆的方程;

(2)是否存在直线使为直角,若存在求出此时直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某超市一年中各月份的收入与支出单位:万元情况的条形统计图已知利润为收入与支出的差,即利润收入一支出,则下列说法正确的是  

A. 利润最高的月份是2月份,且2月份的利润为40万元

B. 利润最低的月份是5月份,且5月份的利润为10万元

C. 收入最少的月份的利润也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

同步练习册答案