【题目】为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况为:5,6,7,8,9,10.把这6名学生的得分看成一个总体.
(1)求该总体的平均数;
(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.
【答案】(1)7.5;(2).
【解析】试题分析:
(1)由题意结合平均数计算公式可得总体平均数为7.5.
(2)由题意可得全部可能的基本结果有15个,而满足题意的结果共有7个,故所求的概率为P(A)=.
试题解析:
(1)总体平均数为×(5+6+7+8+9+10)=7.5.
(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.
从总体中抽取2个个体,全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.
事件A包含的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.
∴所求的概率为P(A)=.
科目:高中数学 来源: 题型:
【题目】已知点O(0,0),A(1,2),B(4,5)及=+t,
求:(1)t为何值时,点P在x轴上?在y轴上?在第二象限?
(2)四边形OABP能否成为平行四边形?若能,求出相应的t值?若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学学习习惯不好,把黑板上老师写的表达式忘了,记不清楚是还是.翻出草稿本发现在用五点作图法列表作图时曾算出过一些数据(如下表).
0 | |||||
0 | 3 | 0 | 0 |
(1)请你帮助该同学补充完表格中的数据,写出该函数的表达式,并写出该函数的最小正周期;
(2)若利用的图象用图象变化法作的图象,其步骤如下:(在空格内填上合适的变换方法)
第一步:的图象向右平移_____得到_____的图象;
第二步:的图象(纵坐标不变)______得到_____的图象;
第三步:的图象(横坐标不变)_____得到的图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,为椭圆的一个焦点,离心率,过作两条互相垂直的直线,, 与椭圆交于两点,与椭圆交于两点,且四点在椭圆上逆时针分布.
(1)求椭圆的标准方程;
(2)求四边形面积的最大值与最小值的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知|x|≤2,|y|≤2,点P的坐标为(x,y).
(1)求当x,y∈R时,P满足(x-2)2+(y-2)2≤4的概率.
(2)求当x,y∈Z时,P满足(x-2)2+(y-2)2≤4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:的右准线方程为,右顶点为.
求椭圆C的方程;
若M,N是椭圆C上不同于A的两点,点P是线段MN的中点.
如图1,若为等腰直角三角形且直角顶点P在x轴上方,求直线MN的方程;
如图2所示,点Q是线段NA的中点,若且的角平分线与x轴垂直,求直线AM的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(文)(2017·开封二模)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.
(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率.
(2)检验结束后,甲、乙两名运动员的成绩用茎叶图表示如图:
计算说明哪位运动员的成绩更稳定.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,分别是椭圆的左、右焦点,过的直线与相交于A,B两点,的周长为。
(1)求椭圆的方程;
(2)是否存在直线使为直角,若存在求出此时直线的方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某超市一年中各月份的收入与支出单位:万元情况的条形统计图已知利润为收入与支出的差,即利润收入一支出,则下列说法正确的是
A. 利润最高的月份是2月份,且2月份的利润为40万元
B. 利润最低的月份是5月份,且5月份的利润为10万元
C. 收入最少的月份的利润也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com