精英家教网 > 高中数学 > 题目详情
已知映射,在映射的原象是(  ) 
A.B.C.D.
B
试题分析:由,所以在映射的原象是
点评:直接考查基本概念,属于基础题型。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数,则         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
(1)已知函数
(2)已知函数分别由下表给出:

1
2
 
3
6

1
2

2
1
  
用分段函数表示,并画出函数的图象。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是定义在上的单调增函数,满足
(1)求
(2)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)我们把同时满足下列两个性质的函数称为“和谐函数” :
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间,使得函数在区间上的值域为.
⑴已知幂函数的图像经过点,判断是否是和谐函数?
⑵判断函数是否是和谐函数?
⑶若函数是和谐函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了应对国际原油的变化,某地建设一座油料库。现在油料库已储油料吨,计划正式运营后的第一年进油量为已储油量的,以后每年的进油量为上一年年底储油量的,且每年运出吨,设为正式运营第n年年底的储油量。(其中
(1)求的表达式
(2)为应对突发事件,该油库年底储油量不得少于吨,如果吨,该油库能否长期按计划运营?如果可以请加以证明;如果不行请求出最多可以运营几年。(取

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为的函数有四个单调区间,则实数满足( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分) 已知是方程的两个不等实根,函数的定义域为
⑴当时,求函数的值域;
⑵证明:函数在其定义域上是增函数;
⑶在(1)的条件下,设函数
若对任意的,总存在,使得成立,
求实数的取值范围.

查看答案和解析>>

同步练习册答案