精英家教网 > 高中数学 > 题目详情
7.已知a、b、c都是正数,
(1)求证:$\frac{bc}{a}$+$\frac{ca}{b}$+$\frac{ab}{c}$≥a+b+c,
(2)若a+b+c=1,求证:$\frac{1-a}{a}$+$\frac{1-b}{b}$+$\frac{1-c}{c}$≥6.

分析 (1)a、b、c都是正数,运用均值不等式,可得a2b2+b2c2≥2ab2c,a2c2+b2c2≥2ac2b,a2b2+a2c2≥2a2bc,累加即可得证;
(2)由a+b+c=1,可得$\frac{1-a}{a}$+$\frac{1-b}{b}$+$\frac{1-c}{c}$=$\frac{b+c}{a}$+$\frac{a+c}{b}$+$\frac{a+b}{c}$=($\frac{b}{a}$+$\frac{a}{b}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}{b}$+$\frac{b}{c}$),运用二元均值不等式即可得证.

解答 证明:(1)a、b、c都是正数,可得
a2b2+b2c2≥2ab2c,
a2c2+b2c2≥2ac2b,
a2b2+a2c2≥2a2bc,
相加可得a2b2+b2c2+c2a2≥ab2c+ac2b+a2bc=abc(b+c+a),
可得$\frac{bc}{a}$+$\frac{ca}{b}$+$\frac{ab}{c}$≥a+b+c(当且仅当a=b=c取得等号);
(2)a+b+c=1,可得
$\frac{1-a}{a}$+$\frac{1-b}{b}$+$\frac{1-c}{c}$=$\frac{b+c}{a}$+$\frac{a+c}{b}$+$\frac{a+b}{c}$
=($\frac{b}{a}$+$\frac{a}{b}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}{b}$+$\frac{b}{c}$)
≥2$\sqrt{\frac{b}{a}•\frac{a}{b}}$+2$\sqrt{\frac{c}{a}•\frac{a}{c}}$+2$\sqrt{\frac{c}{b}•\frac{b}{c}}$=6.
(当且仅当a=b=c取得等号).

点评 本题考查不等式的证明,注意运用二元均值不等式,以及不等式的性质,考查推理和运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知动点P到点M(-2,0)和到直线x=-2的距离相等,则动点P的轨迹是(  )
A.抛物线B.双曲线左支C.一条直线D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a,b均大于0,且$\frac{1}{a}$+$\frac{1}{b}$=1.求证:对于每个n∈N*,都有(a+b)n-(an+bn)≥22n-2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥面ABCD,已知∠ABC=45°,AB=2,BC=2$\sqrt{2}$,SB=SC=$\sqrt{3}$.
(1)设平面SCD与平面SAB的交线为l,求证:l∥AB;
(2)求证:SA⊥BC;
(3)求直线SD与面SAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆C:x2+y2-2x-2y+1=0,直线l:3x+4y-17=0.若在直线l上任取一点M作圆C的切线MA,MB,切点分别为A,B,则AB的长度取最小值时直线AB的方程为6x-8y-19=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题“三角形的任意两边之和大于第三边”.类比上述结论,你能得到:三棱锥任意三个面的面积之和大于第四个面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{1}{2}$-cos2($\frac{π}{4}$-x)的单调增区间是(  )
A.[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈ZB.[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{4}$],k∈Z
C.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈ZD.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知tan($\frac{π}{4}$+θ)=3,则$\frac{6sinθ-cosθ}{cosθ+2sinθ}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,已知圆C1:(x+2)2+y2=m2和圆C2:(x-2)2+y2=4-m2,其中m∈R,且0<m<2.
(I)若m=1,求直线x-$\sqrt{3}$y+1=0被圆C1截得的弦长;
(Ⅱ)过点P(0,b)作直线l,使圆C1和圆C2在l的两侧,且均与1相切,求实数b的取值范围.

查看答案和解析>>

同步练习册答案