精英家教网 > 高中数学 > 题目详情
18.设a,b均大于0,且$\frac{1}{a}$+$\frac{1}{b}$=1.求证:对于每个n∈N*,都有(a+b)n-(an+bn)≥22n-2n+1

分析 运用二元均值不等式可得$\sqrt{ab}$≥2,再由二项式定理,化简整理可得(a+b)n-(an+bn
=$\frac{1}{2}[{({a^{n-1}}b+a{b^{n-1}})C_n^1+({a^{n-2}}{b^2}+{a^2}{b^{n-2}})C_n^2+…+(a{b^{n-1}}+{a^{n-1}}b)C_n^{n-1}}]$,再由均值不等式即可得证.

解答 证明:由a,b均大于0,且$\frac{1}{a}$+$\frac{1}{b}$=1,
可得$1=\frac{1}{a}+\frac{1}{b}≥\frac{2}{{\sqrt{ab}}}$知$\sqrt{ab}≥2$,
由二项式定理,得${(a+b)^n}-({a^n}+{b^n})=C_n^1{a^{n-1}}b+C_n^2{a^{n-2}}{b^2}+…+C_n^{n-2}{a^2}{b^{n-2}}+C_n^{n-1}a{b^{n-1}}$
=$\frac{1}{2}[{({a^{n-1}}b+a{b^{n-1}})C_n^1+({a^{n-2}}{b^2}+{a^2}{b^{n-2}})C_n^2+…+(a{b^{n-1}}+{a^{n-1}}b)C_n^{n-1}}]$$≥\sqrt{{{(ab)}^n}}({C_n^1+C_n^2+…+C_n^{n-1}})≥{2^n}({2^n}-2)={2^{2n}}-{2^{n+1}}$.
则原不等式成立.

点评 本题考查不等式的证明,注意运用二元均值不等式和二项式定理,以及二项式系数的性质,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.直三棱柱ABC-A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=60°,则此球的表面积等于$\frac{28}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一块边长为8cm的正方形铁板按如图1所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,则侧棱SC与底面ABCD所成角的余弦值为$\frac{3\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,切线的长度等于点P到原点O的长,则|PQ|的最小值为(  )
A.$\frac{13}{10}$B.3C.4D.$\frac{21}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知命题p:x2-2x-3<0;命题q:$\frac{1}{3-x}$>1,则p是q的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若样本数据x1,x2,…,x10的标准差为2,则数据2x1-1,2x2-1,…,2x10-1的标准差为(  )
A.3B.-3C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.记M(x,y,z)为x,y、z三个数中的最小数.若二次函数f(x)=ax2+bx+c(a,b,c>0)有零点,则M($\frac{b+c}{a}$,$\frac{c+a}{b}$,$\frac{a+b}{c}$)的最大值为(  )
A.2B.$\frac{3}{2}$C.$\frac{5}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a、b、c都是正数,
(1)求证:$\frac{bc}{a}$+$\frac{ca}{b}$+$\frac{ab}{c}$≥a+b+c,
(2)若a+b+c=1,求证:$\frac{1-a}{a}$+$\frac{1-b}{b}$+$\frac{1-c}{c}$≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若b=3,c=1,cosA=$\frac{1}{3}$,则a=(  )
A.$2\sqrt{3}$B.$2\sqrt{2}$C.8D.12

查看答案和解析>>

同步练习册答案