分析 画出球的内接直三棱ABC-A1B1C1,作出球的半径,然后可求球的表面积.
解答
解:直三棱ABC-A1B1C1的各顶点都在同一球面上,
若AB=AC=AA1=2,∠BAC=60°,
如图,连接上下底面中心,O为PQ的中点,OP⊥平面ABC,
则球的半径为OA,
由题意OP=1,AP=$\frac{2\sqrt{3}}{3}$,∴OA=$\sqrt{1+\frac{4}{3}}$=$\sqrt{\frac{7}{3}}$,
所以球的表面积为:4πR2=$\frac{28}{3}$π
故答案为:$\frac{28}{3}$π.
点评 本题考查球的体积和表面积,球的内接体问题,考查学生空间想象能力理解失误能力,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{π}$ | D. | $\frac{1}{2π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 合计 | |
| 甲班 | 20 | 30 | 50 |
| 乙班 | 10 | 40 | 50 |
| 合计 | 30 | 70 | 100 |
| P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14π | B. | 12π | C. | 10π | D. | 8π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com