精英家教网 > 高中数学 > 题目详情
10.已知|$\overrightarrow{a}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=1,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角θ为60°,则|$\overrightarrow{b}$|为1.

分析 根据平面向量的数量积公式列出方程解出|$\overrightarrow{b}$|.

解答 解:∵$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos60°=1,即2×|$\overrightarrow{b}$|×$\frac{1}{2}$=1,
解得|$\overrightarrow{b}$|=1.
故答案为:1.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.向一等边三角形内随机撒1000个点,则落在该等边三角形内切圆的点约有(  )
A.850个B.605个C.415个D.295个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对于二次函数y=2x2-3x+1,求函数在[0,2]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.袋子中放有大小、性质完全相同的4个白球和5个黑球,如果不放回地依次摸出2个球,则在第一次摸到白球的条件下,第二次摸到黑球的概率为(  )
A.$\frac{5}{8}$B.$\frac{5}{18}$C.$\frac{5}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高二八班选出甲、乙、丙三名同学参加级部组织的科学知识竞赛.在该次竞赛中只设成绩优秀和成绩良好两个等次,若某同学成绩优秀,则给予班级10分的班级积分,若成绩良好,则给予班级5分的班级积分.假设甲、乙、丙成绩为优秀的概率分别为$\frac{2}{3}$,$\frac{1}{2}$,$\frac{1}{3}$,他们的竞赛成绩相互独立.
(1)求在该次竞赛中甲、乙、丙三名同学中至少有一名成绩为优秀的概率;
(2)记在该次竞赛中甲、乙、丙三名同学所得的班级积分之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+$\sqrt{3}$csinB.
(1)求B;
(2)若b=2,a=$\sqrt{3}$c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱ABC-A1B1C1中,D是BC的中点.
(1)若E为B1C1的中点,求证:BE∥平面AC1D;
(2)若平面B1BCC1⊥平面ABC,且AB=AC,求证:平面AC1D⊥平面B1BCC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A,B两点,如果$\overrightarrow{OA}$•$\overrightarrow{OB}$=-12,那么抛物线C的方程为(  )
A.x2=8yB.x2=4yC.y2=8xD.y2=4x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直三棱柱ABC-A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=60°,则此球的表面积等于$\frac{28}{3}$π.

查看答案和解析>>

同步练习册答案