分析 (1)记“甲成绩为优秀”为事件A,“乙成绩优秀”为事件B,“丙成绩优秀”为事件C,“甲、乙、丙至少有一名成绩为优秀”为事件E,由事件A、B、C是相互独立事件,事件ABC与事件E是对立事件,能求出在该次竞赛中甲、乙、丙三名同学中至少有一名成绩为优秀的概率.
(2)ξ的所有可能取值为15,20,25,30,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
解答 解:(1)记“甲成绩为优秀”为事件A,“乙成绩优秀”为事件B,“丙成绩优秀”为事件C,
“甲、乙、丙至少有一名成绩为优秀”为事件E,
∵事件A、B、C是相互独立事件,事件ABC与事件E是对立事件,
∴P(E)=1-P($\overline{ABC}$)=1-$\frac{1}{3}×\frac{1}{2}×\frac{2}{3}$=$\frac{8}{9}$.
(2)ξ的所有可能取值为15,20,25,30,
P(ξ=15)=P($\overline{A}\overline{B}\overline{C}$)=$\frac{1}{3}×\frac{1}{2}×\frac{2}{3}$=$\frac{1}{9}$,
P(ξ=20)=P(A$\overline{B}\overline{C}$)+P($\overline{A}B\overline{C}$)+P($\overline{A}\overline{B}C$)=$\frac{2}{3}×\frac{1}{2}×\frac{2}{3}$+$\frac{2}{3}×\frac{1}{2}×\frac{1}{3}$+$\frac{1}{3}×\frac{1}{2}×\frac{1}{3}$=$\frac{7}{18}$,
P(ξ=30)=P(ABC)=$\frac{2}{3}×\frac{1}{2}×\frac{1}{3}$=$\frac{1}{9}$,
P(ξ=25)=1-$\frac{1}{9}-\frac{7}{18}-\frac{1}{9}$=$\frac{7}{18}$,
∴ξ的分布列为:
| ξ | 15 | 20 | 25 | 30 |
| P | $\frac{1}{9}$ | $\frac{7}{18}$ | $\frac{7}{18}$ | $\frac{1}{9}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 合计 | |
| 甲班 | 20 | 30 | 50 |
| 乙班 | 10 | 40 | 50 |
| 合计 | 30 | 70 | 100 |
| P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com