17£®ÒÑÖªÊýÁÐ{an}£¬{bn}£¬SnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÏòÁ¿$\overrightarrow{x}$=£¨1£¬bn£©£¬$\overrightarrow{y}$=£¨an-1£¬Sn£©£¬$\overrightarrow{x}$¡Î$\overrightarrow{y}$£®
£¨1£©Èôbn=2£¬ÇóÊýÁÐ{an}ͨÏʽ£»
£¨2£©Èôbn=$\frac{n}{2}$£¬a2=0£®
¢ÙÖ¤Ã÷£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ»
¢ÚÉèÊýÁÐ{cn}Âú×ãcn=$\frac{{{a_{n+3}}}}{{{a_{n+2}}}}$£¬ÎÊÊÇ·ñ´æÔÚÕýÕûÊýl£¬m£¨l£¼m£¬ÇÒl¡Ù2£¬m¡Ù2£©£¬Ê¹µÃcl¡¢c2¡¢cm³ÉµÈ±ÈÊýÁУ¬Èô´æÔÚ£¬Çó³öl¡¢mµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓÃÁ½¸öÏòÁ¿Æ½ÐеÄ×ø±ê¹ØÏµµÃµ½Sn=£¨an-1£©bn£¬½øÒ»²½¶Ônȡֵ£¬µÃµ½ÊýÁÐ{an}ÊǵȲîÊýÁУ»
£¨2£©¢ÙÓÉ${b_n}=\frac{n}{2}$£¬Ôò2Sn=nan-n¢Û£¬ÓÖ2Sn+1=£¨ n+1£©an+1-£¨n+1£©¢Ü£¬Á½Ê½Ïà¼õ¼´¿ÉµÃµ½ÊýÁÐ{an}µÄµÝÍÆ¹«Ê½£¬½øÒ»²½¶Ôn ȡֵ£¬µÃµ½ÊýÁÐ{an}ÊÇÊ×ÏîΪ-1£¬¹«²îΪ1µÄµÈ²îÊýÁУ®
¢ÚÓɢٵõ½ÊýÁÐ{cn}ͨÏʽ£¬¸ù¾Ým£¬lµÄ·¶Î§ÌÖÂÛ¿ÉÄܵÄȡֵ£®

½â´ð ½â£º£¨1£©ÒòΪ$\overrightarrow{x}$=£¨1£¬bn£©£¬$\overrightarrow{y}$=£¨an-1£¬Sn£©£¬$\overrightarrow{x}$¡Î$\overrightarrow{y}$£®
µÃSn=£¨an-1£©bn£¬µ±bn=2£¬ÔòSn=2an-2  ¢Ù£¬
µ±n=1ʱ£¬S1=2a1-2£¬¼´a1=2£¬¡­£¨1·Ö£©
ÓÖSn+1=2an+1-2  ¢Ú£¬
¢Ú-¢ÙµÃSn+1-Sn=2an+1-2an£¬
¼´an+1=2an£¬ÓÖa1=2£¬
ËùÒÔ{an}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬¡­£¨3·Ö£©
ËùÒÔan=2n£®¡­£¨4·Ö£©
£¨2£©¢ÙÖ¤Ã÷£ºÒòΪ${b_n}=\frac{n}{2}$£¬Ôò2Sn=nan-n¢Û£¬
µ±n=1ʱ£¬2S1=a1-1£¬¼´a1=-1£¬
ÓÖ2Sn+1=£¨ n+1£©an+1-£¨n+1£©¢Ü£¬
¢Ü-¢ÛµÃ
2Sn+1-2Sn=£¨n+1£©an+1-nan-1£¬¡­£¨6·Ö£©
¼´£¨n-1£©an+1-nan-1=0 ¢Ý£¬
ÓÖnan+2-£¨n+1£©an+1-1=0¢Þ
¢Þ-¢ÝµÃ£¬nan+2-2nan+1+nan=0£¬
¼´an+2+an=2an+1£¬ËùÒÔÊýÁÐ{an}ÊǵȲîÊýÁУ®¡­£¨8·Ö£©
¢ÚÓÖa1=-1£¬a2=0£¬
ËùÒÔÊýÁÐ{an}ÊÇÊ×ÏîΪ-1£¬¹«²îΪ1µÄµÈ²îÊýÁУ®
an=-1+£¨n-1£©¡Á1=n-2£¬ËùÒÔ${c_n}=\frac{n+1}{n}$£¬¡­£¨10·Ö£©
¼ÙÉè´æÔÚl£¼m£¨l¡Ù2£¬m¡Ù2£©£¬Ê¹µÃcl¡¢c2¡¢cm³ÉµÈ±ÈÊýÁУ¬¼´$c_2^2={c_l}{c_m}$£¬
¿ÉµÃ$\frac{9}{4}=\frac{l+1}{l}•\frac{m+1}{m}$£¬¡­£¨12·Ö£©
ÕûÀíµÃ5lm-4l=4m+4¼´$l=\frac{4m+4}{5m-4}$£¬ÓÉ$\frac{4m+4}{5m-4}¡Ý1$£¬µÃ1¡Üm¡Ü8£¬¡­£¨14·Ö£©
Ò»Ò»´úÈë¼ìÑé$\left\{\begin{array}{l}m=1\\ l=8\end{array}\right.$»ò$\left\{\begin{array}{l}m=2\\ l=2\end{array}\right.$»ò$\left\{\begin{array}{l}m=3\\ l=\frac{16}{11}\end{array}\right.$»ò$\left\{\begin{array}{l}m=4\\ l=\frac{5}{4}\end{array}\right.$»ò$\left\{\begin{array}{l}m=5\\ l=\frac{8}{7}\end{array}\right.$»ò$\left\{\begin{array}{l}m=6\\ l=\frac{14}{13}\end{array}\right.$»ò$\left\{\begin{array}{l}m=7\\ l=\frac{32}{31}\end{array}\right.$»ò$\left\{\begin{array}{l}m=8\\ l=1\end{array}\right.$
ÓÉl£¼m£¬ËùÒÔ´æÔÚl=1£¬m=8·ûºÏÌõ¼þ£®¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÓÉÊýÁеÄǰnÏîºÍÇóͨÏʽÒÔ¼°µÈ²îÊýÁÐͨÏʽµÄÔËÓ㻹ؼüÊÇÕýÈ·Çó³ö{an}ͨÏʽ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª¡÷ABCµÄÈý¸ö¶¥µãA£¨-1£¬0£©£¬B£¨1£¬0£©£¬C£¨2£¬3£©£¬ÆäÍâ½ÓԲΪԲH£®
£¨¢ñ£©ÇóÔ²HµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl¹ýµãC£¬ÇÒ±»Ô²H½ØµÃµÄÏÒ³¤Îª2£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª¦Á¡¢¦ÂΪÈñ½Ç£¬cos¦Á=$\frac{3}{5}$£¬cos£¨¦Á+¦Â£©=-$\frac{5}{13}$£¬Ôòcos¦Â=$\frac{33}{65}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³Ð£¸ß¶þ°Ë°àÑ¡³ö¼×¡¢ÒÒ¡¢±ûÈýÃûͬѧ²Î¼Ó¼¶²¿×éÖ¯µÄ¿ÆÑ§ÖªÊ¶¾ºÈü£®ÔڸôξºÈüÖÐÖ»Éè³É¼¨ÓÅÐãºÍ³É¼¨Á¼ºÃÁ½¸öµÈ´Î£¬Èôijͬѧ³É¼¨ÓÅÐ㣬Ôò¸øÓè°à¼¶10·ÖµÄ°à¼¶»ý·Ö£¬Èô³É¼¨Á¼ºÃ£¬Ôò¸øÓè°à¼¶5·ÖµÄ°à¼¶»ý·Ö£®¼ÙÉè¼×¡¢ÒÒ¡¢±û³É¼¨ÎªÓÅÐãµÄ¸ÅÂÊ·Ö±ðΪ$\frac{2}{3}$£¬$\frac{1}{2}$£¬$\frac{1}{3}$£¬ËûÃǵľºÈü³É¼¨Ï໥¶ÀÁ¢£®
£¨1£©ÇóÔڸôξºÈüÖмס¢ÒÒ¡¢±ûÈýÃûͬѧÖÐÖÁÉÙÓÐÒ»Ãû³É¼¨ÎªÓÅÐãµÄ¸ÅÂÊ£»
£¨2£©¼ÇÔڸôξºÈüÖмס¢ÒÒ¡¢±ûÈýÃûͬѧËùµÃµÄ°à¼¶»ý·ÖÖ®ºÍÎªËæ»ú±äÁ¿¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êýf£¨x£©=2sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬ÇÒ|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨$\frac{¦Ð}{2}$£©µÄֵΪ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬DÊÇBCµÄÖе㣮
£¨1£©ÈôEΪB1C1µÄÖе㣬ÇóÖ¤£ºBE¡ÎÆ½ÃæAC1D£»
£¨2£©ÈôÆ½ÃæB1BCC1¡ÍÆ½ÃæABC£¬ÇÒAB=AC£¬ÇóÖ¤£ºÆ½ÃæAC1D¡ÍÆ½ÃæB1BCC1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®´üÖÐ×°ÓÐ6ֻƹÅÒÇò£¬ÆäÖÐ4Ö»°×µÄ£¬2Ö»ºìµÄ£¬´ÓÖÐÈÎÈ¡2Ö»Çò£º
£¨1£©¾ùΪ°×ÇòµÄ¸ÅÂÊÊǶàÉÙ£¿
£¨2£©È¡³öµÄÇòÒ»Ö»°×ÇòÒ»Ö»ºìÇòµÄ¸ÅÂÊÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª¼¯ºÏM={y|y=x2+1£¬x¡ÊR}£¬N={x|y=$\sqrt{x-2}$}£¬ÔòM¡ÉN=[2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªMÊÇÇòOµÄÖ±¾¶CDÉϵÄÒ»µã£¬CM=$\frac{1}{2}$MD£¬CD¡ÍÆ½Ãæ¦Á£¬MΪ´¹×㣬¦Á½ØÇòOËùµÃ½ØÃæµÄÃæ»ýΪ¦Ð£¬ÔòÇòOµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®3¦ÐB£®9¦ÐC£®$\frac{9¦Ð}{2}$D£®$\frac{7¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸