精英家教网 > 高中数学 > 题目详情
15.已知M是球O的直径CD上的一点,CM=$\frac{1}{2}$MD,CD⊥平面α,M为垂足,α截球O所得截面的面积为π,则球O的表面积为(  )
A.B.C.$\frac{9π}{2}$D.$\frac{7π}{2}$

分析 设球的半径为R,根据题意知由与球心距离为$\frac{1}{3}$R的平面截球所得的截面圆的面积是π,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积.

解答 解:设球的半径为R,∵CM=$\frac{1}{2}$MD,∴平面α与球心的距离为$\frac{1}{3}$R,
∵α截球O所得截面的面积为π,
∴d=$\frac{1}{3}$R时,r=1,
故由R2=r2+d2得R2=12+($\frac{1}{3}$R)2,∴R2=$\frac{9}{8}$
∴球的表面积S=4πR2=$\frac{9}{2}$π.
故选:C.

点评 本题考查的知识点是球的表面积公式,若球的截面圆半径为r,球心距为d,球半径为R,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an},{bn},Sn为数列{an}的前n项和,向量$\overrightarrow{x}$=(1,bn),$\overrightarrow{y}$=(an-1,Sn),$\overrightarrow{x}$∥$\overrightarrow{y}$.
(1)若bn=2,求数列{an}通项公式;
(2)若bn=$\frac{n}{2}$,a2=0.
①证明:数列{an}为等差数列;
②设数列{cn}满足cn=$\frac{{{a_{n+3}}}}{{{a_{n+2}}}}$,问是否存在正整数l,m(l<m,且l≠2,m≠2),使得cl、c2、cm成等比数列,若存在,求出l、m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.作出下面函数的图象,并根据图象写出单调区间.
(1)y=|x2-1|;
(2)y=-x2+2|x|-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.模拟考试后,某校对甲、乙两个班的数学考试成绩进行分析,规定:不少于120分为优秀,否则为非优秀,统计成绩后,得到如下的2×2列联表,已知在甲、乙两个班全部100人中随机抽取1人为优秀的概率为$\frac{3}{10}$.
优秀非优秀合计
甲班203050
乙班104050
合计3070100
(1)请完成上面的2×2列联表;
(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”?
(3)在“优秀”的学生人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中甲班学生人数ξ的分布列和数学期望.
参考公式与临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平行四边形ABCD中,AD⊥BD,AD=2,BD=4,点M、N分别为BD、BC的中点,将其沿对角线BD折起成四面体QBCD,使平面QBD⊥平面BCD,P为QC的中点.

(1)求证:PM⊥BD;
(2)求点D到平面QMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在三棱锥S-ABC中,侧棱SC⊥平面SAB,SA⊥BC,侧面△SAB,△SBC,△SAC的面积分别为1,$\frac{3}{2}$,3,则此三棱锥的外接球的表面积为(  )
A.14πB.12πC.10πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为(  )
A.100πB.$\frac{256}{3}$πC.$\frac{100}{3}$πD.$\frac{500}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,若a1=3,a4=24,则的q值为(  )
A.8B.7C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\sqrt{x}$+$\sqrt{3-3x}$的值域为(  )
A.[0,3]B.[1,2]C.[0,$\sqrt{3}$]D.[$\frac{{1-\sqrt{5}}}{2}$,$\frac{{1+\sqrt{5}}}{2}$]

查看答案和解析>>

同步练习册答案