| A. | 850个 | B. | 605个 | C. | 415个 | D. | 295个 |
分析 求出三角形的面积,再求出内切圆的面积,根据几何概型概率计算公式,求其比值即可解答.
解答
解:不妨设三角形边长为1,则三角形面积为$\frac{\sqrt{3}}{4}$,
内切圆的半径为等边三角形高的三分之一,
即$\frac{1}{3}×\frac{1}{2}×\sqrt{3}$=$\frac{\sqrt{3}}{6}$,
∴内切圆面积为$π×(\frac{\sqrt{3}}{6})^{2}$=$\frac{1}{12}$π,
则点M落在其内切圆内部(阴影)区域的概率为$\frac{\frac{π}{12}}{\frac{\sqrt{3}}{4}}$=$\frac{\sqrt{3}π}{9}$,
∵向一等边三角形内随机撒1000个点,
∴落在该等边三角形内切圆的点约有1000×$\frac{\sqrt{3}π}{9}$≈605个.
故选D.
点评 本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}+2\sqrt{3}}{6}$ | B. | $\frac{\sqrt{5}-2\sqrt{3}}{6}$ | C. | $\frac{\sqrt{15}+2}{6}$ | D. | $\frac{\sqrt{15}-2}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60种 | B. | 120种 | C. | 12种 | D. | 16种 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com