精英家教网 > 高中数学 > 题目详情
8.已知sin(π+α)=-$\frac{2}{3}$(0<α<$\frac{π}{2}$),则cos(α-$\frac{π}{3}$)的值为(  )
A.$\frac{\sqrt{5}+2\sqrt{3}}{6}$B.$\frac{\sqrt{5}-2\sqrt{3}}{6}$C.$\frac{\sqrt{15}+2}{6}$D.$\frac{\sqrt{15}-2}{6}$

分析 利用诱导公式可求sinα的值,根据同角三角函数基本关系式可求cosα的值,利用特殊角的三角函数值,两角差的余弦函数公式即可化简求值得解.

解答 解:∵sin(π+α)=-sinα=-$\frac{2}{3}$,
∴sinα=$\frac{2}{3}$,
又∵0<α<$\frac{π}{2}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{\sqrt{5}}{3}$,
∴cos(α-$\frac{π}{3}$)=cosαcos$\frac{π}{3}$+sinαsin$\frac{π}{3}$=$\frac{\sqrt{5}}{3}×\frac{1}{2}+\frac{2}{3}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{5}+2\sqrt{3}}{6}$.
故选:A.

点评 本题主要考查了诱导公式,同角三角函数基本关系式,特殊角的三角函数值,两角差的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在△ABC中,点D,E分别是边AB,AC上的一点,且满足AD=$\frac{1}{2}$AB,AE=$\frac{1}{3}$AC,若BE⊥CD,则cosA的最小值是$\frac{2\sqrt{6}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{ax-3}{x+1}$(a∈R).
(1)若不等式f(x)<1的解集为(-1,4),求a的值;
(2)设a≤0,解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=kx与圆(x-2)2+(y+1)2=4相交于A,B两点,若|AB|≥2$\sqrt{3}$,则k的取值范围是$[-\frac{4}{3},0]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.到2016年,北京市高考英语总分将由150分降低到100分,语文分值将相应增加.某校高三学生率先尝试100分制英语考试,从中随机抽出50人的英语成绩作为样本并进行统计,将测试结果按如下方式分成五组:第一组[50,60],第二组[60,70],…第五组[90,100],如图是按上述分组方法得到的频率分布直方图.
(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这次参加英语考试的高三学生的英语平均成绩;
(2)从这五组中抽取14人进行座谈,若抽取的这14人中,恰好有2人成绩为50分,7人成绩为70分,2人成绩为75分,3人成绩为80分,求这14人英语成绩的方差;
(3)从50人的样本中,随机抽取测试成绩在[50,60]∪[90,100]内的两名学生,设其测试成绩分别为m,n
(i)求事件“|m-n|>30”的概率;
(ii)求事件“mn≤3600”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),过点B($\frac{4}{5}$,-$\frac{1}{5}$)作斜率为1的直线l交椭圆E于C、D两点,点B恰为线段CD的中点,点B恰为线段CD的中点.
(1)求椭圆E的标准方程;
(2)线段RS(S为椭圆上半部分不包括左顶点的点)是过椭圆右焦点F的弦,满足$\overrightarrow{RF}$=λ$\overrightarrow{FS}$,当P点坐标为($\sqrt{3}$,$\frac{1}{2}$)且△PRS的面积最大时,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.向一等边三角形内随机撒1000个点,则落在该等边三角形内切圆的点约有(  )
A.850个B.605个C.415个D.295个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算${∫}_{0}^{1}$($\sqrt{1-(x-1)^{2}}$+e2x+cos2x)dx=$\frac{π}{4}$+$\frac{1}{2}$e2+$\frac{1}{4}$sin1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.袋子中放有大小、性质完全相同的4个白球和5个黑球,如果不放回地依次摸出2个球,则在第一次摸到白球的条件下,第二次摸到黑球的概率为(  )
A.$\frac{5}{8}$B.$\frac{5}{18}$C.$\frac{5}{9}$D.$\frac{4}{9}$

查看答案和解析>>

同步练习册答案